import sys import time from dataclasses import dataclass, field from typing import Dict, List, Tuple import numpy as np import torch import torch.nn.functional as F from coqpit import Coqpit from torch import nn from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from TTS.tts.utils.visual import plot_spectrogram from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_fsspec from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset from TTS.vocoder.layers.losses import WaveRNNLoss from TTS.vocoder.models.base_vocoder import BaseVocoder from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian def stream(string, variables): sys.stdout.write(f"\r{string}" % variables) # pylint: disable=abstract-method # relates https://github.com/pytorch/pytorch/issues/42305 class ResBlock(nn.Module): def __init__(self, dims): super().__init__() self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) self.batch_norm1 = nn.BatchNorm1d(dims) self.batch_norm2 = nn.BatchNorm1d(dims) def forward(self, x): residual = x x = self.conv1(x) x = self.batch_norm1(x) x = F.relu(x) x = self.conv2(x) x = self.batch_norm2(x) return x + residual class MelResNet(nn.Module): def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad): super().__init__() k_size = pad * 2 + 1 self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) self.batch_norm = nn.BatchNorm1d(compute_dims) self.layers = nn.ModuleList() for _ in range(num_res_blocks): self.layers.append(ResBlock(compute_dims)) self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) def forward(self, x): x = self.conv_in(x) x = self.batch_norm(x) x = F.relu(x) for f in self.layers: x = f(x) x = self.conv_out(x) return x class Stretch2d(nn.Module): def __init__(self, x_scale, y_scale): super().__init__() self.x_scale = x_scale self.y_scale = y_scale def forward(self, x): b, c, h, w = x.size() x = x.unsqueeze(-1).unsqueeze(3) x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) return x.view(b, c, h * self.y_scale, w * self.x_scale) class UpsampleNetwork(nn.Module): def __init__( self, feat_dims, upsample_scales, compute_dims, num_res_blocks, res_out_dims, pad, use_aux_net, ): super().__init__() self.total_scale = np.cumproduct(upsample_scales)[-1] self.indent = pad * self.total_scale self.use_aux_net = use_aux_net if use_aux_net: self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) self.resnet_stretch = Stretch2d(self.total_scale, 1) self.up_layers = nn.ModuleList() for scale in upsample_scales: k_size = (1, scale * 2 + 1) padding = (0, scale) stretch = Stretch2d(scale, 1) conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) conv.weight.data.fill_(1.0 / k_size[1]) self.up_layers.append(stretch) self.up_layers.append(conv) def forward(self, m): if self.use_aux_net: aux = self.resnet(m).unsqueeze(1) aux = self.resnet_stretch(aux) aux = aux.squeeze(1) aux = aux.transpose(1, 2) else: aux = None m = m.unsqueeze(1) for f in self.up_layers: m = f(m) m = m.squeeze(1)[:, :, self.indent : -self.indent] return m.transpose(1, 2), aux class Upsample(nn.Module): def __init__(self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net): super().__init__() self.scale = scale self.pad = pad self.indent = pad * scale self.use_aux_net = use_aux_net self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) def forward(self, m): if self.use_aux_net: aux = self.resnet(m) aux = torch.nn.functional.interpolate(aux, scale_factor=self.scale, mode="linear", align_corners=True) aux = aux.transpose(1, 2) else: aux = None m = torch.nn.functional.interpolate(m, scale_factor=self.scale, mode="linear", align_corners=True) m = m[:, :, self.indent : -self.indent] m = m * 0.045 # empirically found return m.transpose(1, 2), aux @dataclass class WavernnArgs(Coqpit): """🐸 WaveRNN model arguments. rnn_dims (int): Number of hidden channels in RNN layers. Defaults to 512. fc_dims (int): Number of hidden channels in fully-conntected layers. Defaults to 512. compute_dims (int): Number of hidden channels in the feature ResNet. Defaults to 128. res_out_dim (int): Number of hidden channels in the feature ResNet output. Defaults to 128. num_res_blocks (int): Number of residual blocks in the ResNet. Defaults to 10. use_aux_net (bool): enable/disable the feature ResNet. Defaults to True. use_upsample_net (bool): enable/ disable the upsampling networl. If False, basic upsampling is used. Defaults to True. upsample_factors (list): Upsampling factors. The multiply of the values must match the `hop_length`. Defaults to ```[4, 8, 8]```. mode (str): Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single Gaussian Distribution and `bits` for quantized bits as the model's output. mulaw (bool): enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults to `True`. pad (int): Padding applied to the input feature frames against the convolution layers of the feature network. Defaults to 2. """ rnn_dims: int = 512 fc_dims: int = 512 compute_dims: int = 128 res_out_dims: int = 128 num_res_blocks: int = 10 use_aux_net: bool = True use_upsample_net: bool = True upsample_factors: List[int] = field(default_factory=lambda: [4, 8, 8]) mode: str = "mold" # mold [string], gauss [string], bits [int] mulaw: bool = True # apply mulaw if mode is bits pad: int = 2 feat_dims: int = 80 class Wavernn(BaseVocoder): def __init__(self, config: Coqpit): """🐸 WaveRNN model. Original paper - https://arxiv.org/abs/1802.08435 Official implementation - https://github.com/fatchord/WaveRNN Args: config (Coqpit): [description] Raises: RuntimeError: [description] Examples: >>> from TTS.vocoder.configs import WavernnConfig >>> config = WavernnConfig() >>> model = Wavernn(config) Paper Abstract: Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we describe a set of general techniques for reducing sampling time while maintaining high output quality. We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of parameters, large sparse networks perform better than small dense networks and this relationship holds for sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an orthogonal method for increasing sampling efficiency. """ super().__init__(config) if isinstance(self.args.mode, int): self.n_classes = 2**self.args.mode elif self.args.mode == "mold": self.n_classes = 3 * 10 elif self.args.mode == "gauss": self.n_classes = 2 else: raise RuntimeError("Unknown model mode value - ", self.args.mode) self.aux_dims = self.args.res_out_dims // 4 if self.args.use_upsample_net: assert ( np.cumproduct(self.args.upsample_factors)[-1] == config.audio.hop_length ), " [!] upsample scales needs to be equal to hop_length" self.upsample = UpsampleNetwork( self.args.feat_dims, self.args.upsample_factors, self.args.compute_dims, self.args.num_res_blocks, self.args.res_out_dims, self.args.pad, self.args.use_aux_net, ) else: self.upsample = Upsample( config.audio.hop_length, self.args.pad, self.args.num_res_blocks, self.args.feat_dims, self.args.compute_dims, self.args.res_out_dims, self.args.use_aux_net, ) if self.args.use_aux_net: self.I = nn.Linear(self.args.feat_dims + self.aux_dims + 1, self.args.rnn_dims) self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) self.rnn2 = nn.GRU(self.args.rnn_dims + self.aux_dims, self.args.rnn_dims, batch_first=True) self.fc1 = nn.Linear(self.args.rnn_dims + self.aux_dims, self.args.fc_dims) self.fc2 = nn.Linear(self.args.fc_dims + self.aux_dims, self.args.fc_dims) self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) else: self.I = nn.Linear(self.args.feat_dims + 1, self.args.rnn_dims) self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) self.rnn2 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) self.fc1 = nn.Linear(self.args.rnn_dims, self.args.fc_dims) self.fc2 = nn.Linear(self.args.fc_dims, self.args.fc_dims) self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) def forward(self, x, mels): bsize = x.size(0) h1 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) h2 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) mels, aux = self.upsample(mels) if self.args.use_aux_net: aux_idx = [self.aux_dims * i for i in range(5)] a1 = aux[:, :, aux_idx[0] : aux_idx[1]] a2 = aux[:, :, aux_idx[1] : aux_idx[2]] a3 = aux[:, :, aux_idx[2] : aux_idx[3]] a4 = aux[:, :, aux_idx[3] : aux_idx[4]] x = ( torch.cat([x.unsqueeze(-1), mels, a1], dim=2) if self.args.use_aux_net else torch.cat([x.unsqueeze(-1), mels], dim=2) ) x = self.I(x) res = x self.rnn1.flatten_parameters() x, _ = self.rnn1(x, h1) x = x + res res = x x = torch.cat([x, a2], dim=2) if self.args.use_aux_net else x self.rnn2.flatten_parameters() x, _ = self.rnn2(x, h2) x = x + res x = torch.cat([x, a3], dim=2) if self.args.use_aux_net else x x = F.relu(self.fc1(x)) x = torch.cat([x, a4], dim=2) if self.args.use_aux_net else x x = F.relu(self.fc2(x)) return self.fc3(x) def inference(self, mels, batched=None, target=None, overlap=None): self.eval() output = [] start = time.time() rnn1 = self.get_gru_cell(self.rnn1) rnn2 = self.get_gru_cell(self.rnn2) with torch.no_grad(): if isinstance(mels, np.ndarray): mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device)) if mels.ndim == 2: mels = mels.unsqueeze(0) wave_len = (mels.size(-1) - 1) * self.config.audio.hop_length mels = self.pad_tensor(mels.transpose(1, 2), pad=self.args.pad, side="both") mels, aux = self.upsample(mels.transpose(1, 2)) if batched: mels = self.fold_with_overlap(mels, target, overlap) if aux is not None: aux = self.fold_with_overlap(aux, target, overlap) b_size, seq_len, _ = mels.size() h1 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) h2 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) x = torch.zeros(b_size, 1).type_as(mels) if self.args.use_aux_net: d = self.aux_dims aux_split = [aux[:, :, d * i : d * (i + 1)] for i in range(4)] for i in range(seq_len): m_t = mels[:, i, :] if self.args.use_aux_net: a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) x = torch.cat([x, m_t, a1_t], dim=1) if self.args.use_aux_net else torch.cat([x, m_t], dim=1) x = self.I(x) h1 = rnn1(x, h1) x = x + h1 inp = torch.cat([x, a2_t], dim=1) if self.args.use_aux_net else x h2 = rnn2(inp, h2) x = x + h2 x = torch.cat([x, a3_t], dim=1) if self.args.use_aux_net else x x = F.relu(self.fc1(x)) x = torch.cat([x, a4_t], dim=1) if self.args.use_aux_net else x x = F.relu(self.fc2(x)) logits = self.fc3(x) if self.args.mode == "mold": sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) output.append(sample.view(-1)) x = sample.transpose(0, 1).type_as(mels) elif self.args.mode == "gauss": sample = sample_from_gaussian(logits.unsqueeze(0).transpose(1, 2)) output.append(sample.view(-1)) x = sample.transpose(0, 1).type_as(mels) elif isinstance(self.args.mode, int): posterior = F.softmax(logits, dim=1) distrib = torch.distributions.Categorical(posterior) sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0 output.append(sample) x = sample.unsqueeze(-1) else: raise RuntimeError("Unknown model mode value - ", self.args.mode) if i % 100 == 0: self.gen_display(i, seq_len, b_size, start) output = torch.stack(output).transpose(0, 1) output = output.cpu() if batched: output = output.numpy() output = output.astype(np.float64) output = self.xfade_and_unfold(output, target, overlap) else: output = output[0] if self.args.mulaw and isinstance(self.args.mode, int): output = AudioProcessor.mulaw_decode(output, self.args.mode) # Fade-out at the end to avoid signal cutting out suddenly fade_out = np.linspace(1, 0, 20 * self.config.audio.hop_length) output = output[:wave_len] if wave_len > len(fade_out): output[-20 * self.config.audio.hop_length :] *= fade_out self.train() return output def gen_display(self, i, seq_len, b_size, start): gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 realtime_ratio = gen_rate * 1000 / self.config.audio.sample_rate stream( "%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f ", (i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio), ) def fold_with_overlap(self, x, target, overlap): """Fold the tensor with overlap for quick batched inference. Overlap will be used for crossfading in xfade_and_unfold() Args: x (tensor) : Upsampled conditioning features. shape=(1, timesteps, features) target (int) : Target timesteps for each index of batch overlap (int) : Timesteps for both xfade and rnn warmup Return: (tensor) : shape=(num_folds, target + 2 * overlap, features) Details: x = [[h1, h2, ... hn]] Where each h is a vector of conditioning features Eg: target=2, overlap=1 with x.size(1)=10 folded = [[h1, h2, h3, h4], [h4, h5, h6, h7], [h7, h8, h9, h10]] """ _, total_len, features = x.size() # Calculate variables needed num_folds = (total_len - overlap) // (target + overlap) extended_len = num_folds * (overlap + target) + overlap remaining = total_len - extended_len # Pad if some time steps poking out if remaining != 0: num_folds += 1 padding = target + 2 * overlap - remaining x = self.pad_tensor(x, padding, side="after") folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device) # Get the values for the folded tensor for i in range(num_folds): start = i * (target + overlap) end = start + target + 2 * overlap folded[i] = x[:, start:end, :] return folded @staticmethod def get_gru_cell(gru): gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) gru_cell.weight_hh.data = gru.weight_hh_l0.data gru_cell.weight_ih.data = gru.weight_ih_l0.data gru_cell.bias_hh.data = gru.bias_hh_l0.data gru_cell.bias_ih.data = gru.bias_ih_l0.data return gru_cell @staticmethod def pad_tensor(x, pad, side="both"): # NB - this is just a quick method i need right now # i.e., it won't generalise to other shapes/dims b, t, c = x.size() total = t + 2 * pad if side == "both" else t + pad padded = torch.zeros(b, total, c).to(x.device) if side in ("before", "both"): padded[:, pad : pad + t, :] = x elif side == "after": padded[:, :t, :] = x return padded @staticmethod def xfade_and_unfold(y, target, overlap): """Applies a crossfade and unfolds into a 1d array. Args: y (ndarry) : Batched sequences of audio samples shape=(num_folds, target + 2 * overlap) dtype=np.float64 overlap (int) : Timesteps for both xfade and rnn warmup Return: (ndarry) : audio samples in a 1d array shape=(total_len) dtype=np.float64 Details: y = [[seq1], [seq2], [seq3]] Apply a gain envelope at both ends of the sequences y = [[seq1_in, seq1_target, seq1_out], [seq2_in, seq2_target, seq2_out], [seq3_in, seq3_target, seq3_out]] Stagger and add up the groups of samples: [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] """ num_folds, length = y.shape target = length - 2 * overlap total_len = num_folds * (target + overlap) + overlap # Need some silence for the rnn warmup silence_len = overlap // 2 fade_len = overlap - silence_len silence = np.zeros((silence_len), dtype=np.float64) # Equal power crossfade t = np.linspace(-1, 1, fade_len, dtype=np.float64) fade_in = np.sqrt(0.5 * (1 + t)) fade_out = np.sqrt(0.5 * (1 - t)) # Concat the silence to the fades fade_in = np.concatenate([silence, fade_in]) fade_out = np.concatenate([fade_out, silence]) # Apply the gain to the overlap samples y[:, :overlap] *= fade_in y[:, -overlap:] *= fade_out unfolded = np.zeros((total_len), dtype=np.float64) # Loop to add up all the samples for i in range(num_folds): start = i * (target + overlap) end = start + target + 2 * overlap unfolded[start:end] += y[i] return unfolded def load_checkpoint( self, config, checkpoint_path, eval=False ): # pylint: disable=unused-argument, redefined-builtin state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) self.load_state_dict(state["model"]) if eval: self.eval() assert not self.training def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: mels = batch["input"] waveform = batch["waveform"] waveform_coarse = batch["waveform_coarse"] y_hat = self.forward(waveform, mels) if isinstance(self.args.mode, int): y_hat = y_hat.transpose(1, 2).unsqueeze(-1) else: waveform_coarse = waveform_coarse.float() waveform_coarse = waveform_coarse.unsqueeze(-1) # compute losses loss_dict = criterion(y_hat, waveform_coarse) return {"model_output": y_hat}, loss_dict def eval_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: return self.train_step(batch, criterion) @torch.no_grad() def test( self, assets: Dict, test_loader: "DataLoader", output: Dict # pylint: disable=unused-argument ) -> Tuple[Dict, Dict]: ap = assets["audio_processor"] figures = {} audios = {} samples = test_loader.dataset.load_test_samples(1) for idx, sample in enumerate(samples): x = torch.FloatTensor(sample[0]) x = x.to(next(self.parameters()).device) y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples) x_hat = ap.melspectrogram(y_hat) figures.update( { f"test_{idx}/ground_truth": plot_spectrogram(x.T), f"test_{idx}/prediction": plot_spectrogram(x_hat.T), } ) audios.update({f"test_{idx}/audio": y_hat}) return figures, audios @staticmethod def format_batch(batch: Dict) -> Dict: waveform = batch[0] mels = batch[1] waveform_coarse = batch[2] return {"input": mels, "waveform": waveform, "waveform_coarse": waveform_coarse} def get_data_loader( # pylint: disable=no-self-use self, config: Coqpit, assets: Dict, is_eval: True, samples: List, verbose: bool, num_gpus: int, ): ap = assets["audio_processor"] dataset = WaveRNNDataset( ap=ap, items=samples, seq_len=config.seq_len, hop_len=ap.hop_length, pad=config.model_args.pad, mode=config.model_args.mode, mulaw=config.model_args.mulaw, is_training=not is_eval, verbose=verbose, ) sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=1 if is_eval else config.batch_size, shuffle=num_gpus == 0, collate_fn=dataset.collate, sampler=sampler, num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, pin_memory=True, ) return loader def get_criterion(self): # define train functions return WaveRNNLoss(self.args.mode) @staticmethod def init_from_config(config: "WavernnConfig"): return Wavernn(config)