import os import re import xml.etree.ElementTree as ET from glob import glob from pathlib import Path from typing import List import pandas as pd from tqdm import tqdm ######################## # DATASETS ######################## def coqui(root_path, meta_file, ignored_speakers=None): """Interal dataset formatter.""" metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|") assert all(x in metadata.columns for x in ["audio_file", "text"]) speaker_name = None if "speaker_name" in metadata.columns else "coqui" emotion_name = None if "emotion_name" in metadata.columns else "neutral" items = [] not_found_counter = 0 for row in metadata.itertuples(): if speaker_name is None and ignored_speakers is not None and row.speaker_name in ignored_speakers: continue audio_path = os.path.join(root_path, row.audio_file) if not os.path.exists(audio_path): not_found_counter += 1 continue items.append( { "text": row.text, "audio_file": audio_path, "speaker_name": speaker_name if speaker_name is not None else row.speaker_name, "emotion_name": emotion_name if emotion_name is not None else row.emotion_name, } ) if not_found_counter > 0: print(f" | > [!] {not_found_counter} files not found") return items def tweb(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalize TWEB dataset. https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset """ txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "tweb" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("\t") wav_file = os.path.join(root_path, cols[0] + ".wav") text = cols[1] items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes Mozilla meta data files to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "mozilla" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = cols[1].strip() text = cols[0].strip() wav_file = os.path.join(root_path, "wavs", wav_file) items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def mozilla_de(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes Mozilla meta data files to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "mozilla" with open(txt_file, "r", encoding="ISO 8859-1") as ttf: for line in ttf: cols = line.strip().split("|") wav_file = cols[0].strip() text = cols[1].strip() folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL" wav_file = os.path.join(root_path, folder_name, wav_file) items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def mailabs(root_path, meta_files=None, ignored_speakers=None): """Normalizes M-AI-Labs meta data files to TTS format Args: root_path (str): root folder of the MAILAB language folder. meta_files (str): list of meta files to be used in the training. If None, finds all the csv files recursively. Defaults to None """ speaker_regex = re.compile("by_book/(male|female)/(?P[^/]+)/") if not meta_files: csv_files = glob(root_path + "/**/metadata.csv", recursive=True) else: csv_files = meta_files # meta_files = [f.strip() for f in meta_files.split(",")] items = [] for csv_file in csv_files: if os.path.isfile(csv_file): txt_file = csv_file else: txt_file = os.path.join(root_path, csv_file) folder = os.path.dirname(txt_file) # determine speaker based on folder structure... speaker_name_match = speaker_regex.search(txt_file) if speaker_name_match is None: continue speaker_name = speaker_name_match.group("speaker_name") # ignore speakers if isinstance(ignored_speakers, list): if speaker_name in ignored_speakers: continue print(" | > {}".format(csv_file)) with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") if not meta_files: wav_file = os.path.join(folder, "wavs", cols[0] + ".wav") else: wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav") if os.path.isfile(wav_file): text = cols[1].strip() items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) else: # M-AI-Labs have some missing samples, so just print the warning print("> File %s does not exist!" % (wav_file)) return items def ljspeech(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the LJSpeech meta data file to TTS format https://keithito.com/LJ-Speech-Dataset/""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "ljspeech" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") text = cols[2] items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def ljspeech_test(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the LJSpeech meta data file for TTS testing https://keithito.com/LJ-Speech-Dataset/""" txt_file = os.path.join(root_path, meta_file) items = [] with open(txt_file, "r", encoding="utf-8") as ttf: speaker_id = 0 for idx, line in enumerate(ttf): # 2 samples per speaker to avoid eval split issues if idx % 2 == 0: speaker_id += 1 cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") text = cols[2] items.append({"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{speaker_id}"}) return items def thorsten(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the thorsten meta data file to TTS format https://github.com/thorstenMueller/deep-learning-german-tts/""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "thorsten" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") text = cols[1] items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def sam_accenture(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the sam-accenture meta data file to TTS format https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files""" xml_file = os.path.join(root_path, "voice_over_recordings", meta_file) xml_root = ET.parse(xml_file).getroot() items = [] speaker_name = "sam_accenture" for item in xml_root.findall("./fileid"): text = item.text wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav") if not os.path.exists(wav_file): print(f" [!] {wav_file} in metafile does not exist. Skipping...") continue items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def ruslan(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the RUSLAN meta data file to TTS format https://ruslan-corpus.github.io/""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "ruslan" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav") text = cols[1] items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def css10(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the CSS10 dataset file to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "css10" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, cols[0]) text = cols[1] items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def nancy(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Normalizes the Nancy meta data file to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "nancy" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: utt_id = line.split()[1] text = line[line.find('"') + 1 : line.rfind('"') - 1] wav_file = os.path.join(root_path, "wavn", utt_id + ".wav") items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def common_voice(root_path, meta_file, ignored_speakers=None): """Normalize the common voice meta data file to TTS format.""" txt_file = os.path.join(root_path, meta_file) items = [] with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: if line.startswith("client_id"): continue cols = line.split("\t") text = cols[2] speaker_name = cols[0] # ignore speakers if isinstance(ignored_speakers, list): if speaker_name in ignored_speakers: continue wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav")) items.append({"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name}) return items def libri_tts(root_path, meta_files=None, ignored_speakers=None): """https://ai.google/tools/datasets/libri-tts/""" items = [] if not meta_files: meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True) else: if isinstance(meta_files, str): meta_files = [os.path.join(root_path, meta_files)] for meta_file in meta_files: _meta_file = os.path.basename(meta_file).split(".")[0] with open(meta_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("\t") file_name = cols[0] speaker_name, chapter_id, *_ = cols[0].split("_") _root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}") wav_file = os.path.join(_root_path, file_name + ".wav") text = cols[2] # ignore speakers if isinstance(ignored_speakers, list): if speaker_name in ignored_speakers: continue items.append({"text": text, "audio_file": wav_file, "speaker_name": f"LTTS_{speaker_name}"}) for item in items: assert os.path.exists(item["audio_file"]), f" [!] wav files don't exist - {item['audio_file']}" return items def custom_turkish(root_path, meta_file, **kwargs): # pylint: disable=unused-argument txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "turkish-female" skipped_files = [] with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav") if not os.path.exists(wav_file): skipped_files.append(wav_file) continue text = cols[1].strip() items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) print(f" [!] {len(skipped_files)} files skipped. They don't exist...") return items # ToDo: add the dataset link when the dataset is released publicly def brspeech(root_path, meta_file, ignored_speakers=None): """BRSpeech 3.0 beta""" txt_file = os.path.join(root_path, meta_file) items = [] with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: if line.startswith("wav_filename"): continue cols = line.split("|") wav_file = os.path.join(root_path, cols[0]) text = cols[2] speaker_id = cols[3] # ignore speakers if isinstance(ignored_speakers, list): if speaker_id in ignored_speakers: continue items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id}) return items def vctk(root_path, meta_files=None, wavs_path="wav48_silence_trimmed", mic="mic1", ignored_speakers=None): """VCTK dataset v0.92. URL: https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip This dataset has 2 recordings per speaker that are annotated with ```mic1``` and ```mic2```. It is believed that (😄 ) ```mic1``` files are the same as the previous version of the dataset. mic1: Audio recorded using an omni-directional microphone (DPA 4035). Contains very low frequency noises. This is the same audio released in previous versions of VCTK: https://doi.org/10.7488/ds/1994 mic2: Audio recorded using a small diaphragm condenser microphone with very wide bandwidth (Sennheiser MKH 800). Two speakers, p280 and p315 had technical issues of the audio recordings using MKH 800. """ file_ext = "flac" items = [] meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) for meta_file in meta_files: _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) file_id = txt_file.split(".")[0] # ignore speakers if isinstance(ignored_speakers, list): if speaker_id in ignored_speakers: continue with open(meta_file, "r", encoding="utf-8") as file_text: text = file_text.readlines()[0] # p280 has no mic2 recordings if speaker_id == "p280": wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_mic1.{file_ext}") else: wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_{mic}.{file_ext}") if os.path.exists(wav_file): items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id}) else: print(f" [!] wav files don't exist - {wav_file}") return items def vctk_old(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None): """homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz""" items = [] meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) for meta_file in meta_files: _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) file_id = txt_file.split(".")[0] # ignore speakers if isinstance(ignored_speakers, list): if speaker_id in ignored_speakers: continue with open(meta_file, "r", encoding="utf-8") as file_text: text = file_text.readlines()[0] wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav") items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_old_" + speaker_id}) return items def synpaflex(root_path, metafiles=None, **kwargs): # pylint: disable=unused-argument items = [] speaker_name = "synpaflex" root_path = os.path.join(root_path, "") wav_files = glob(f"{root_path}**/*.wav", recursive=True) for wav_file in wav_files: if os.sep + "wav" + os.sep in wav_file: txt_file = wav_file.replace("wav", "txt") else: txt_file = os.path.join( os.path.dirname(wav_file), "txt", os.path.basename(wav_file).replace(".wav", ".txt") ) if os.path.exists(txt_file) and os.path.exists(wav_file): with open(txt_file, "r", encoding="utf-8") as file_text: text = file_text.readlines()[0] items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items def open_bible(root_path, meta_files="train", ignore_digits_sentences=True, ignored_speakers=None): """ToDo: Refer the paper when available""" items = [] split_dir = meta_files meta_files = glob(f"{os.path.join(root_path, split_dir)}/**/*.txt", recursive=True) for meta_file in meta_files: _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) file_id = txt_file.split(".")[0] # ignore speakers if isinstance(ignored_speakers, list): if speaker_id in ignored_speakers: continue with open(meta_file, "r", encoding="utf-8") as file_text: text = file_text.readline().replace("\n", "") # ignore sentences that contains digits if ignore_digits_sentences and any(map(str.isdigit, text)): continue wav_file = os.path.join(root_path, split_dir, speaker_id, file_id + ".flac") items.append({"text": text, "audio_file": wav_file, "speaker_name": "OB_" + speaker_id}) return items def mls(root_path, meta_files=None, ignored_speakers=None): """http://www.openslr.org/94/""" items = [] with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta: for line in meta: file, text = line.split("\t") text = text[:-1] speaker, book, *_ = file.split("_") wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav") # ignore speakers if isinstance(ignored_speakers, list): if speaker in ignored_speakers: continue items.append({"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker}) return items # ======================================== VOX CELEB =========================================== def voxceleb2(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument """ :param meta_file Used only for consistency with load_tts_samples api """ return _voxcel_x(root_path, meta_file, voxcel_idx="2") def voxceleb1(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument """ :param meta_file Used only for consistency with load_tts_samples api """ return _voxcel_x(root_path, meta_file, voxcel_idx="1") def _voxcel_x(root_path, meta_file, voxcel_idx): assert voxcel_idx in ["1", "2"] expected_count = 148_000 if voxcel_idx == "1" else 1_000_000 voxceleb_path = Path(root_path) cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv" cache_to.parent.mkdir(exist_ok=True) # if not exists meta file, crawl recursively for 'wav' files if meta_file is not None: with open(str(meta_file), "r", encoding="utf-8") as f: return [x.strip().split("|") for x in f.readlines()] elif not cache_to.exists(): cnt = 0 meta_data = [] wav_files = voxceleb_path.rglob("**/*.wav") for path in tqdm( wav_files, desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.", total=expected_count, ): speaker_id = str(Path(path).parent.parent.stem) assert speaker_id.startswith("id") text = None # VoxCel does not provide transciptions, and they are not needed for training the SE meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n") cnt += 1 with open(str(cache_to), "w", encoding="utf-8") as f: f.write("".join(meta_data)) if cnt < expected_count: raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}") with open(str(cache_to), "r", encoding="utf-8") as f: return [x.strip().split("|") for x in f.readlines()] def emotion(root_path, meta_file, ignored_speakers=None): """Generic emotion dataset""" txt_file = os.path.join(root_path, meta_file) items = [] with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: if line.startswith("file_path"): continue cols = line.split(",") wav_file = os.path.join(root_path, cols[0]) speaker_id = cols[1] emotion_id = cols[2].replace("\n", "") # ignore speakers if isinstance(ignored_speakers, list): if speaker_id in ignored_speakers: continue items.append({"audio_file": wav_file, "speaker_name": speaker_id, "emotion_name": emotion_id}) return items def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]: # pylint: disable=unused-argument """Normalizes the Baker meta data file to TTS format Args: root_path (str): path to the baker dataset meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence Returns: List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences """ txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "baker" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: wav_name, text = line.rstrip("\n").split("|") wav_path = os.path.join(root_path, "clips_22", wav_name) items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name}) return items def kokoro(root_path, meta_file, **kwargs): # pylint: disable=unused-argument """Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "kokoro" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") text = cols[2].replace(" ", "") items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) return items