import glob import os import random from multiprocessing import Manager from typing import List, Tuple import numpy as np import torch from torch.utils.data import Dataset class WaveGradDataset(Dataset): """ WaveGrad Dataset searchs for all the wav files under root path and converts them to acoustic features on the fly and returns random segments of (audio, feature) couples. """ def __init__( self, ap, items, seq_len, hop_len, pad_short, conv_pad=2, is_training=True, return_segments=True, use_noise_augment=False, use_cache=False, verbose=False, ): super().__init__() self.ap = ap self.item_list = items self.seq_len = seq_len if return_segments else None self.hop_len = hop_len self.pad_short = pad_short self.conv_pad = conv_pad self.is_training = is_training self.return_segments = return_segments self.use_cache = use_cache self.use_noise_augment = use_noise_augment self.verbose = verbose if return_segments: assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) # cache acoustic features if use_cache: self.create_feature_cache() def create_feature_cache(self): self.manager = Manager() self.cache = self.manager.list() self.cache += [None for _ in range(len(self.item_list))] @staticmethod def find_wav_files(path): return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) def __len__(self): return len(self.item_list) def __getitem__(self, idx): item = self.load_item(idx) return item def load_test_samples(self, num_samples: int) -> List[Tuple]: """Return test samples. Args: num_samples (int): Number of samples to return. Returns: List[Tuple]: melspectorgram and audio. Shapes: - melspectrogram (Tensor): :math:`[C, T]` - audio (Tensor): :math:`[T_audio]` """ samples = [] return_segments = self.return_segments self.return_segments = False for idx in range(num_samples): mel, audio = self.load_item(idx) samples.append([mel, audio]) self.return_segments = return_segments return samples def load_item(self, idx): """load (audio, feat) couple""" # compute features from wav wavpath = self.item_list[idx] if self.use_cache and self.cache[idx] is not None: audio = self.cache[idx] else: audio = self.ap.load_wav(wavpath) if self.return_segments: # correct audio length wrt segment length if audio.shape[-1] < self.seq_len + self.pad_short: audio = np.pad( audio, (0, self.seq_len + self.pad_short - len(audio)), mode="constant", constant_values=0.0 ) assert ( audio.shape[-1] >= self.seq_len + self.pad_short ), f"{audio.shape[-1]} vs {self.seq_len + self.pad_short}" # correct the audio length wrt hop length p = (audio.shape[-1] // self.hop_len + 1) * self.hop_len - audio.shape[-1] audio = np.pad(audio, (0, p), mode="constant", constant_values=0.0) if self.use_cache: self.cache[idx] = audio if self.return_segments: max_start = len(audio) - self.seq_len start = random.randint(0, max_start) end = start + self.seq_len audio = audio[start:end] if self.use_noise_augment and self.is_training and self.return_segments: audio = audio + (1 / 32768) * torch.randn_like(audio) mel = self.ap.melspectrogram(audio) mel = mel[..., :-1] # ignore the padding audio = torch.from_numpy(audio).float() mel = torch.from_numpy(mel).float().squeeze(0) return (mel, audio) @staticmethod def collate_full_clips(batch): """This is used in tune_wavegrad.py. It pads sequences to the max length.""" max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1] max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0] mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length]) audios = torch.zeros([len(batch), max_audio_length]) for idx, b in enumerate(batch): mel = b[0] audio = b[1] mels[idx, :, : mel.shape[1]] = mel audios[idx, : audio.shape[0]] = audio return audios, mels