import gradio as gr from PIL import Image import torch from diffusers import DiffusionPipeline, AutoencoderTiny import os SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) if SAFETY_CHECKER: pipe = DiffusionPipeline.from_pretrained( "SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="lcm_txt2img", scheduler=None, ) else: pipe = DiffusionPipeline.from_pretrained( "SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="lcm_txt2img", scheduler=None, safety_checker=None, ) pipe.to(device="cuda", dtype=torch.float16) pipe.vae = AutoencoderTiny.from_pretrained( "madebyollin/taesd", device="cuda", torch_dtype=torch.float16 ) pipe.vae = pipe.vae.cuda() pipe.unet.to(memory_format=torch.channels_last) pipe.set_progress_bar_config(disable=True) if TORCH_COMPILE: pipe.text_encoder = torch.compile(pipe.text_encoder, mode="max-autotune") pipe.tokenizer = torch.compile(pipe.tokenizer, mode="max-autotune") pipe.unet = torch.compile(pipe.unet, mode="max-autotune") pipe.vae = torch.compile(pipe.vae, mode="max-autotune") def predict(prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed=1231231): torch.manual_seed(seed) results = pipe( prompt1=prompt1, prompt2=prompt2, sv=merge_ratio, sharpness=sharpness, width=512, height=512, num_inference_steps=steps, guidance_scale=guidance, lcm_origin_steps=50, output_type="pil", # return_dict=False, ) nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: raise gr.Error("NSFW content detected. Please try another prompt.") return results.images[0] css = """ #container{ margin: 0 auto; max-width: 80rem; } #intro{ max-width: 32rem; text-align: center; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="container"): gr.Markdown( """# SDZoom Welcome to sdzoom, a testbed application designed for optimizing and experimenting with various configurations to achieve the fastest Stable Diffusion (SD) pipelines. RTSD leverages the expertise provided by Latent Consistency Models (LCM). For more information about LCM, visit their website at [Latent Consistency Models](https://latent-consistency-models.github.io/). """, elem_id="intro", ) with gr.Row(): with gr.Column(): image = gr.Image(type="pil") with gr.Column(): merge_ratio = gr.Slider( value=50, minimum=1, maximum=100, step=1, label="Merge Ratio" ) guidance = gr.Slider( label="Guidance", minimum=1, maximum=50, value=10.0, step=0.01 ) steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=20, step=1) sharpness = gr.Slider( value=1.0, minimum=0, maximum=1, step=0.001, label="Sharpness" ) seed = gr.Slider( randomize=True, minimum=0, maximum=12013012031030, label="Seed" ) prompt1 = gr.Textbox(label="Prompt 1") prompt2 = gr.Textbox(label="Prompt 2") generate_bt = gr.Button("Generate") inputs = [prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed] gr.Examples( examples=[ ["Elon Musk", "Mark Zuckerberg", 50, 10.0, 4, 1.0, 1231231], ["Elon Musk", "Bill Gates", 50, 10.0, 4, 1.0, 53453], [ "Asian women, intricate jewlery in her hair, 8k", "Tom Cruise, intricate jewlery in her hair, 8k", 50, 10.0, 4, 1.0, 542343, ], ], fn=predict, inputs=inputs, outputs=image, ) generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) merge_ratio.change( fn=predict, inputs=inputs, outputs=image, show_progress=False ) guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) sharpness.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) prompt1.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) prompt2.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) demo.queue() if __name__ == "__main__": demo.launch()