|
import argparse |
|
|
|
import torch |
|
import numpy as np |
|
import sys |
|
import os |
|
import dlib |
|
|
|
sys.path.append(".") |
|
sys.path.append("..") |
|
|
|
from configs import data_configs, paths_config |
|
from datasets.inference_dataset import InferenceDataset |
|
from torch.utils.data import DataLoader |
|
from utils.model_utils import setup_model |
|
from utils.common import tensor2im |
|
from utils.alignment import align_face |
|
from PIL import Image |
|
|
|
|
|
def main(args): |
|
net, opts = setup_model(args.ckpt, device) |
|
is_cars = 'cars_' in opts.dataset_type |
|
generator = net.decoder |
|
generator.eval() |
|
args, data_loader = setup_data_loader(args, opts) |
|
|
|
|
|
latents_file_path = os.path.join(args.save_dir, 'latents.pt') |
|
if os.path.exists(latents_file_path): |
|
latent_codes = torch.load(latents_file_path).to(device) |
|
else: |
|
latent_codes = get_all_latents(net, data_loader, args.n_sample, is_cars=is_cars) |
|
torch.save(latent_codes, latents_file_path) |
|
|
|
if not args.latents_only: |
|
generate_inversions(args, generator, latent_codes, is_cars=is_cars) |
|
|
|
|
|
def setup_data_loader(args, opts): |
|
dataset_args = data_configs.DATASETS[opts.dataset_type] |
|
transforms_dict = dataset_args['transforms'](opts).get_transforms() |
|
images_path = args.images_dir if args.images_dir is not None else dataset_args['test_source_root'] |
|
print(f"images path: {images_path}") |
|
align_function = None |
|
if args.align: |
|
align_function = run_alignment |
|
test_dataset = InferenceDataset(root=images_path, |
|
transform=transforms_dict['transform_test'], |
|
preprocess=align_function, |
|
opts=opts) |
|
|
|
data_loader = DataLoader(test_dataset, |
|
batch_size=args.batch, |
|
shuffle=False, |
|
num_workers=2, |
|
drop_last=True) |
|
|
|
print(f'dataset length: {len(test_dataset)}') |
|
|
|
if args.n_sample is None: |
|
args.n_sample = len(test_dataset) |
|
return args, data_loader |
|
|
|
|
|
def get_latents(net, x, is_cars=False): |
|
codes = net.encoder(x) |
|
if net.opts.start_from_latent_avg: |
|
if codes.ndim == 2: |
|
codes = codes + net.latent_avg.repeat(codes.shape[0], 1, 1)[:, 0, :] |
|
else: |
|
codes = codes + net.latent_avg.repeat(codes.shape[0], 1, 1) |
|
if codes.shape[1] == 18 and is_cars: |
|
codes = codes[:, :16, :] |
|
return codes |
|
|
|
|
|
def get_all_latents(net, data_loader, n_images=None, is_cars=False): |
|
all_latents = [] |
|
i = 0 |
|
with torch.no_grad(): |
|
for batch in data_loader: |
|
if n_images is not None and i > n_images: |
|
break |
|
x = batch |
|
inputs = x.to(device).float() |
|
latents = get_latents(net, inputs, is_cars) |
|
all_latents.append(latents) |
|
i += len(latents) |
|
return torch.cat(all_latents) |
|
|
|
|
|
def save_image(img, save_dir, idx): |
|
result = tensor2im(img) |
|
im_save_path = os.path.join(save_dir, f"{idx:05d}.jpg") |
|
Image.fromarray(np.array(result)).save(im_save_path) |
|
|
|
|
|
@torch.no_grad() |
|
def generate_inversions(args, g, latent_codes, is_cars): |
|
print('Saving inversion images') |
|
inversions_directory_path = os.path.join(args.save_dir, 'inversions') |
|
os.makedirs(inversions_directory_path, exist_ok=True) |
|
for i in range(args.n_sample): |
|
imgs, _ = g([latent_codes[i].unsqueeze(0)], input_is_latent=True, randomize_noise=False, return_latents=True) |
|
if is_cars: |
|
imgs = imgs[:, :, 64:448, :] |
|
save_image(imgs[0], inversions_directory_path, i + 1) |
|
|
|
|
|
def run_alignment(image_path): |
|
predictor = dlib.shape_predictor(paths_config.model_paths['shape_predictor']) |
|
aligned_image = align_face(filepath=image_path, predictor=predictor) |
|
print("Aligned image has shape: {}".format(aligned_image.size)) |
|
return aligned_image |
|
|
|
|
|
if __name__ == "__main__": |
|
device = "cuda" |
|
|
|
parser = argparse.ArgumentParser(description="Inference") |
|
parser.add_argument("--images_dir", type=str, default=None, |
|
help="The directory of the images to be inverted") |
|
parser.add_argument("--save_dir", type=str, default=None, |
|
help="The directory to save the latent codes and inversion images. (default: images_dir") |
|
parser.add_argument("--batch", type=int, default=1, help="batch size for the generator") |
|
parser.add_argument("--n_sample", type=int, default=None, help="number of the samples to infer.") |
|
parser.add_argument("--latents_only", action="store_true", help="infer only the latent codes of the directory") |
|
parser.add_argument("--align", action="store_true", help="align face images before inference") |
|
parser.add_argument("ckpt", metavar="CHECKPOINT", help="path to generator checkpoint") |
|
|
|
args = parser.parse_args() |
|
main(args) |
|
|