|
""" |
|
This file runs the main training/val loop |
|
""" |
|
import os |
|
import json |
|
import math |
|
import sys |
|
import pprint |
|
import torch |
|
from argparse import Namespace |
|
|
|
sys.path.append(".") |
|
sys.path.append("..") |
|
|
|
from options.train_options import TrainOptions |
|
from training.coach import Coach |
|
|
|
|
|
def main(): |
|
opts = TrainOptions().parse() |
|
previous_train_ckpt = None |
|
if opts.resume_training_from_ckpt: |
|
opts, previous_train_ckpt = load_train_checkpoint(opts) |
|
else: |
|
setup_progressive_steps(opts) |
|
create_initial_experiment_dir(opts) |
|
|
|
coach = Coach(opts, previous_train_ckpt) |
|
coach.train() |
|
|
|
|
|
def load_train_checkpoint(opts): |
|
train_ckpt_path = opts.resume_training_from_ckpt |
|
previous_train_ckpt = torch.load(opts.resume_training_from_ckpt, map_location='cpu') |
|
new_opts_dict = vars(opts) |
|
opts = previous_train_ckpt['opts'] |
|
opts['resume_training_from_ckpt'] = train_ckpt_path |
|
update_new_configs(opts, new_opts_dict) |
|
pprint.pprint(opts) |
|
opts = Namespace(**opts) |
|
if opts.sub_exp_dir is not None: |
|
sub_exp_dir = opts.sub_exp_dir |
|
opts.exp_dir = os.path.join(opts.exp_dir, sub_exp_dir) |
|
create_initial_experiment_dir(opts) |
|
return opts, previous_train_ckpt |
|
|
|
|
|
def setup_progressive_steps(opts): |
|
log_size = int(math.log(opts.stylegan_size, 2)) |
|
num_style_layers = 2*log_size - 2 |
|
num_deltas = num_style_layers - 1 |
|
if opts.progressive_start is not None: |
|
opts.progressive_steps = [0] |
|
next_progressive_step = opts.progressive_start |
|
for i in range(num_deltas): |
|
opts.progressive_steps.append(next_progressive_step) |
|
next_progressive_step += opts.progressive_step_every |
|
|
|
assert opts.progressive_steps is None or is_valid_progressive_steps(opts, num_style_layers), \ |
|
"Invalid progressive training input" |
|
|
|
|
|
def is_valid_progressive_steps(opts, num_style_layers): |
|
return len(opts.progressive_steps) == num_style_layers and opts.progressive_steps[0] == 0 |
|
|
|
|
|
def create_initial_experiment_dir(opts): |
|
if os.path.exists(opts.exp_dir): |
|
raise Exception('Oops... {} already exists'.format(opts.exp_dir)) |
|
os.makedirs(opts.exp_dir) |
|
|
|
opts_dict = vars(opts) |
|
pprint.pprint(opts_dict) |
|
with open(os.path.join(opts.exp_dir, 'opt.json'), 'w') as f: |
|
json.dump(opts_dict, f, indent=4, sort_keys=True) |
|
|
|
|
|
def update_new_configs(ckpt_opts, new_opts): |
|
for k, v in new_opts.items(): |
|
if k not in ckpt_opts: |
|
ckpt_opts[k] = v |
|
if new_opts['update_param_list']: |
|
for param in new_opts['update_param_list']: |
|
ckpt_opts[param] = new_opts[param] |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|