|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
from utils import data_utils |
|
|
|
|
|
class InferenceDataset(Dataset): |
|
|
|
def __init__(self, root, opts, transform=None, preprocess=None): |
|
self.paths = sorted(data_utils.make_dataset(root)) |
|
self.transform = transform |
|
self.preprocess = preprocess |
|
self.opts = opts |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|
|
def __getitem__(self, index): |
|
from_path = self.paths[index] |
|
if self.preprocess is not None: |
|
from_im = self.preprocess(from_path) |
|
else: |
|
from_im = Image.open(from_path).convert('RGB') |
|
if self.transform: |
|
from_im = self.transform(from_im) |
|
return from_im |
|
|