|
import os |
|
|
|
import torch |
|
from torch import nn |
|
from torch.autograd import Function |
|
from torch.nn import functional as F |
|
|
|
|
|
module_path = os.path.dirname(__file__) |
|
|
|
|
|
class FusedLeakyReLU(nn.Module): |
|
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): |
|
super().__init__() |
|
|
|
self.bias = nn.Parameter(torch.zeros(channel)) |
|
self.negative_slope = negative_slope |
|
self.scale = scale |
|
|
|
def forward(self, input): |
|
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) |
|
|
|
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5): |
|
if input.device.type == "cpu": |
|
if bias is not None: |
|
rest_dim = [1] * (input.ndim - bias.ndim - 1) |
|
return ( |
|
F.leaky_relu( |
|
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2 |
|
) |
|
* scale |
|
) |
|
|
|
else: |
|
return F.leaky_relu(input, negative_slope=0.2) * scale |
|
|
|
else: |
|
return FusedLeakyReLUFunction.apply( |
|
input.contiguous(), bias, negative_slope, scale |
|
) |
|
|
|
|