|
import os |
|
|
|
import torch |
|
from torch.autograd import Function |
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
module_path = os.path.dirname(__file__) |
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): |
|
out = upfirdn2d_native( |
|
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1] |
|
) |
|
|
|
return out |
|
|
|
|
|
def upfirdn2d_native( |
|
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 |
|
): |
|
_, channel, in_h, in_w = input.shape |
|
input = input.reshape(-1, in_h, in_w, 1) |
|
|
|
_, in_h, in_w, minor = input.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = input.view(-1, in_h, 1, in_w, 1, minor) |
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) |
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor) |
|
|
|
out = F.pad( |
|
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] |
|
) |
|
out = out[ |
|
:, |
|
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), |
|
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), |
|
:, |
|
] |
|
|
|
out = out.permute(0, 3, 1, 2) |
|
out = out.reshape( |
|
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] |
|
) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape( |
|
-1, |
|
minor, |
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, |
|
) |
|
out = out.permute(0, 2, 3, 1) |
|
out = out[:, ::down_y, ::down_x, :] |
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y |
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x |
|
|
|
return out.view(-1, channel, out_h, out_w) |
|
|