|
from matplotlib import pyplot as plt |
|
import torch |
|
import torch.nn.functional as F |
|
import os |
|
import cv2 |
|
import dlib |
|
from PIL import Image |
|
import numpy as np |
|
import math |
|
import torchvision |
|
import scipy |
|
import scipy.ndimage |
|
import torchvision.transforms as transforms |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
shape_predictor_path = hf_hub_download(repo_id="aijack/jojogan", filename="face_landmarks.dat") |
|
|
|
|
|
google_drive_paths = { |
|
|
|
} |
|
|
|
@torch.no_grad() |
|
def load_model(generator, model_file_path): |
|
ensure_checkpoint_exists(model_file_path) |
|
ckpt = torch.load(model_file_path, map_location=lambda storage, loc: storage) |
|
generator.load_state_dict(ckpt["g_ema"], strict=False) |
|
return generator.mean_latent(50000) |
|
|
|
def ensure_checkpoint_exists(model_weights_filename): |
|
if not os.path.isfile(model_weights_filename) and ( |
|
model_weights_filename in google_drive_paths |
|
): |
|
gdrive_url = google_drive_paths[model_weights_filename] |
|
try: |
|
from gdown import download as drive_download |
|
|
|
drive_download(gdrive_url, model_weights_filename, quiet=False) |
|
except ModuleNotFoundError: |
|
print( |
|
"gdown module not found.", |
|
"pip3 install gdown or, manually download the checkpoint file:", |
|
gdrive_url |
|
) |
|
|
|
if not os.path.isfile(model_weights_filename) and ( |
|
model_weights_filename not in google_drive_paths |
|
): |
|
print( |
|
model_weights_filename, |
|
" not found, you may need to manually download the model weights." |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def load_source(files, generator, device='cuda'): |
|
sources = [] |
|
|
|
for file in files: |
|
source = torch.load(f'./inversion_codes/{file}.pt')['latent'].to(device) |
|
|
|
if source.size(0) != 1: |
|
source = source.unsqueeze(0) |
|
|
|
if source.ndim == 3: |
|
source = generator.get_latent(source, truncation=1, is_latent=True) |
|
source = list2style(source) |
|
|
|
sources.append(source) |
|
|
|
sources = torch.cat(sources, 0) |
|
if type(sources) is not list: |
|
sources = style2list(sources) |
|
|
|
return sources |
|
|
|
def display_image(image, size=None, mode='nearest', unnorm=False, title=''): |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = transforms.ToTensor()(image).unsqueeze(0) |
|
if image.is_cuda: |
|
image = image.cpu() |
|
if size is not None and image.size(-1) != size: |
|
image = F.interpolate(image, size=(size,size), mode=mode) |
|
if image.dim() == 4: |
|
image = image[0] |
|
image = image.permute(1, 2, 0).detach().numpy() |
|
plt.figure() |
|
plt.title(title) |
|
plt.axis('off') |
|
plt.imshow(image) |
|
|
|
def get_landmark(filepath, predictor): |
|
"""get landmark with dlib |
|
:return: np.array shape=(68, 2) |
|
""" |
|
detector = dlib.get_frontal_face_detector() |
|
|
|
img = dlib.load_rgb_image(filepath) |
|
dets = detector(img, 1) |
|
assert len(dets) > 0, "Face not detected, try another face image" |
|
|
|
for k, d in enumerate(dets): |
|
shape = predictor(img, d) |
|
|
|
t = list(shape.parts()) |
|
a = [] |
|
for tt in t: |
|
a.append([tt.x, tt.y]) |
|
lm = np.array(a) |
|
return lm |
|
|
|
|
|
def align_face(filepath, output_size=256, transform_size=1024, enable_padding=True): |
|
|
|
""" |
|
:param filepath: str |
|
:return: PIL Image |
|
""" |
|
predictor = dlib.shape_predictor(shape_predictor_path) |
|
lm = get_landmark(filepath, predictor) |
|
|
|
lm_chin = lm[0: 17] |
|
lm_eyebrow_left = lm[17: 22] |
|
lm_eyebrow_right = lm[22: 27] |
|
lm_nose = lm[27: 31] |
|
lm_nostrils = lm[31: 36] |
|
lm_eye_left = lm[36: 42] |
|
lm_eye_right = lm[42: 48] |
|
lm_mouth_outer = lm[48: 60] |
|
lm_mouth_inner = lm[60: 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
img = Image.open(filepath) |
|
|
|
transform_size = output_size |
|
enable_padding = True |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), |
|
min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), |
|
max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), |
|
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
|
|
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), Image.ANTIALIAS) |
|
|
|
|
|
return img |
|
|
|
def strip_path_extension(path): |
|
return os.path.splitext(path)[0] |
|
|