aijack commited on
Commit
856b6b5
1 Parent(s): 2390429

Upload 5 files

Browse files
Files changed (5) hide show
  1. app.py +150 -0
  2. e4e_projection.py +38 -0
  3. model.py +688 -0
  4. requirements.txt +10 -0
  5. util.py +205 -0
app.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ import torch
4
+ import gradio as gr
5
+ import torch
6
+ torch.backends.cudnn.benchmark = True
7
+ from torchvision import transforms, utils
8
+ from util import *
9
+ from PIL import Image
10
+ import math
11
+ import random
12
+ import numpy as np
13
+ from torch import nn, autograd, optim
14
+ from torch.nn import functional as F
15
+ from tqdm import tqdm
16
+ import lpips
17
+ from model import *
18
+ import urllib.request
19
+
20
+ #from e4e_projection import projection as e4e_projection
21
+
22
+ from copy import deepcopy
23
+ import imageio
24
+
25
+ import os
26
+ import sys
27
+ import numpy as np
28
+ from PIL import Image
29
+ import torch
30
+ import torchvision.transforms as transforms
31
+ from argparse import Namespace
32
+ from e4e.models.psp import pSp
33
+ from util import *
34
+ from huggingface_hub import hf_hub_download
35
+
36
+ device= 'cpu'
37
+ model_path_e = hf_hub_download(repo_id="aijackliu/e4e", filename="e4e.pt")
38
+ ckpt = torch.load(model_path_e, map_location='cpu')
39
+ opts = ckpt['opts']
40
+ opts['checkpoint_path'] = model_path_e
41
+ opts= Namespace(**opts)
42
+ net = pSp(opts, device).eval().to(device)
43
+ # Fetch image for analysis
44
+ img_url = "http://claireye.com.tw/img/230212a.jpg"
45
+ urllib.request.urlretrieve(img_url, "pose.jpg")
46
+ @ torch.no_grad()
47
+ def projection(img, name, device='cuda'):
48
+
49
+
50
+ transform = transforms.Compose(
51
+ [
52
+ transforms.Resize(256),
53
+ transforms.CenterCrop(256),
54
+ transforms.ToTensor(),
55
+ transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
56
+ ]
57
+ )
58
+ img = transform(img).unsqueeze(0).to(device)
59
+ images, w_plus = net(img, randomize_noise=False, return_latents=True)
60
+ result_file = {}
61
+ result_file['latent'] = w_plus[0]
62
+ torch.save(result_file, name)
63
+ return w_plus[0]
64
+
65
+
66
+
67
+
68
+ device = 'cpu'
69
+
70
+
71
+ latent_dim = 512
72
+
73
+ model_path_s = hf_hub_download(repo_id="aijackliu/stylegan2", filename="stylegan2.pt")
74
+ original_generator = Generator(1024, latent_dim, 8, 2).to(device)
75
+ ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
76
+ original_generator.load_state_dict(ckpt["g_ema"], strict=False)
77
+ mean_latent = original_generator.mean_latent(10000)
78
+
79
+ generatorjojo = deepcopy(original_generator)
80
+
81
+ modelcaitlyn = deepcopy(original_generator)
82
+
83
+ generatorart = deepcopy(original_generator)
84
+
85
+ generatorsketch = deepcopy(original_generator)
86
+
87
+
88
+ transform = transforms.Compose(
89
+ [
90
+ transforms.Resize((1024, 1024)),
91
+ transforms.ToTensor(),
92
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
93
+ ]
94
+ )
95
+
96
+
97
+
98
+
99
+ modeljojo = hf_hub_download(repo_id="aijackliu/jojo", filename="jojo.pt")
100
+
101
+
102
+ ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
103
+ generatorjojo.load_state_dict(ckptjojo["g"], strict=False)
104
+
105
+ modelcaitlyn = hf_hub_download(repo_id="aijackliu/arcane", filename="arcane.pt")
106
+
107
+ ckptcaitlyn = torch.load(modelcaitlyn, map_location=lambda storage, loc: storage)
108
+ generatorcaitlyn.load_state_dict(ckptcaitlyn["g"], strict=False)
109
+
110
+ modelart = hf_hub_download(repo_id="aijackliu/art", filename="art.pt")
111
+
112
+ ckptart = torch.load(modelart, map_location=lambda storage, loc: storage)
113
+ generatorart.load_state_dict(ckptart["g"], strict=False)
114
+
115
+
116
+ modelSketch = hf_hub_download(repo_id="aijackliu/sketch", filename="sketch.pt")
117
+
118
+ ckptsketch = torch.load(modelSketch, map_location=lambda storage, loc: storage)
119
+ generatorsketch.load_state_dict(ckptsketch["g"], strict=False)
120
+
121
+ def inference(img, model):
122
+ img.save('out.jpg')
123
+ aligned_face = align_face('out.jpg')
124
+
125
+ my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
126
+ if model == 'JoJo':
127
+ with torch.no_grad():
128
+ my_sample = generatorjojo(my_w, input_is_latent=True)
129
+ elif model == 'Caitlyn':
130
+ with torch.no_grad():
131
+ my_sample = generatorcaitlyn(my_w, input_is_latent=True)
132
+ elif model == 'Art':
133
+ with torch.no_grad():
134
+ my_sample = generatorart(my_w, input_is_latent=True)
135
+ else:
136
+ with torch.no_grad():
137
+ my_sample = generatorsketch(my_w, input_is_latent=True)
138
+
139
+
140
+ npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
141
+ imageio.imwrite('filename.jpeg', npimage)
142
+ return 'filename.jpeg'
143
+
144
+ title = "JoJoGAN"
145
+ description = "Gradio Demo for JoJoGAN: One Shot Face Stylization. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
146
+
147
+ article = "<p style='text-align: center'><a href='http://claireye.com.tw'>Claireye</a> | 2023</p>"
148
+
149
+ examples=[['pose.jpg']]
150
+ gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['JoJo', 'Caitlyn','Art','Sketch'], type="value", default='JoJo', label="Model")], gr.outputs.Image(type="file"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch()
e4e_projection.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import numpy as np
4
+ from PIL import Image
5
+ import torch
6
+ import torchvision.transforms as transforms
7
+ from argparse import Namespace
8
+ from e4e.models.psp import pSp
9
+ from util import *
10
+
11
+
12
+
13
+ @ torch.no_grad()
14
+ def projection(img, name, device='cuda'):
15
+
16
+
17
+ model_path = 'e4e.pt'
18
+ ckpt = torch.load(model_path, map_location='cpu')
19
+ opts = ckpt['opts']
20
+ opts['checkpoint_path'] = model_path
21
+ opts= Namespace(**opts)
22
+ net = pSp(opts, device).eval().to(device)
23
+
24
+ transform = transforms.Compose(
25
+ [
26
+ transforms.Resize(256),
27
+ transforms.CenterCrop(256),
28
+ transforms.ToTensor(),
29
+ transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
30
+ ]
31
+ )
32
+
33
+ img = transform(img).unsqueeze(0).to(device)
34
+ images, w_plus = net(img, randomize_noise=False, return_latents=True)
35
+ result_file = {}
36
+ result_file['latent'] = w_plus[0]
37
+ torch.save(result_file, name)
38
+ return w_plus[0]
model.py ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import functools
4
+ import operator
5
+
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import functional as F
9
+ from torch.autograd import Function
10
+
11
+ from op import conv2d_gradfix
12
+ if torch.cuda.is_available():
13
+ from op.fused_act import FusedLeakyReLU, fused_leaky_relu
14
+ from op.upfirdn2d import upfirdn2d
15
+ else:
16
+ from op.fused_act_cpu import FusedLeakyReLU, fused_leaky_relu
17
+ from op.upfirdn2d_cpu import upfirdn2d
18
+
19
+
20
+ class PixelNorm(nn.Module):
21
+ def __init__(self):
22
+ super().__init__()
23
+
24
+ def forward(self, input):
25
+ return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
26
+
27
+
28
+ def make_kernel(k):
29
+ k = torch.tensor(k, dtype=torch.float32)
30
+
31
+ if k.ndim == 1:
32
+ k = k[None, :] * k[:, None]
33
+
34
+ k /= k.sum()
35
+
36
+ return k
37
+
38
+
39
+ class Upsample(nn.Module):
40
+ def __init__(self, kernel, factor=2):
41
+ super().__init__()
42
+
43
+ self.factor = factor
44
+ kernel = make_kernel(kernel) * (factor ** 2)
45
+ self.register_buffer("kernel", kernel)
46
+
47
+ p = kernel.shape[0] - factor
48
+
49
+ pad0 = (p + 1) // 2 + factor - 1
50
+ pad1 = p // 2
51
+
52
+ self.pad = (pad0, pad1)
53
+
54
+ def forward(self, input):
55
+ out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
56
+
57
+ return out
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, kernel, factor=2):
62
+ super().__init__()
63
+
64
+ self.factor = factor
65
+ kernel = make_kernel(kernel)
66
+ self.register_buffer("kernel", kernel)
67
+
68
+ p = kernel.shape[0] - factor
69
+
70
+ pad0 = (p + 1) // 2
71
+ pad1 = p // 2
72
+
73
+ self.pad = (pad0, pad1)
74
+
75
+ def forward(self, input):
76
+ out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
77
+
78
+ return out
79
+
80
+
81
+ class Blur(nn.Module):
82
+ def __init__(self, kernel, pad, upsample_factor=1):
83
+ super().__init__()
84
+
85
+ kernel = make_kernel(kernel)
86
+
87
+ if upsample_factor > 1:
88
+ kernel = kernel * (upsample_factor ** 2)
89
+
90
+ self.register_buffer("kernel", kernel)
91
+
92
+ self.pad = pad
93
+
94
+ def forward(self, input):
95
+ out = upfirdn2d(input, self.kernel, pad=self.pad)
96
+
97
+ return out
98
+
99
+
100
+ class EqualConv2d(nn.Module):
101
+ def __init__(
102
+ self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
103
+ ):
104
+ super().__init__()
105
+
106
+ self.weight = nn.Parameter(
107
+ torch.randn(out_channel, in_channel, kernel_size, kernel_size)
108
+ )
109
+ self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
110
+
111
+ self.stride = stride
112
+ self.padding = padding
113
+
114
+ if bias:
115
+ self.bias = nn.Parameter(torch.zeros(out_channel))
116
+
117
+ else:
118
+ self.bias = None
119
+
120
+ def forward(self, input):
121
+ out = conv2d_gradfix.conv2d(
122
+ input,
123
+ self.weight * self.scale,
124
+ bias=self.bias,
125
+ stride=self.stride,
126
+ padding=self.padding,
127
+ )
128
+
129
+ return out
130
+
131
+ def __repr__(self):
132
+ return (
133
+ f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
134
+ f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
135
+ )
136
+
137
+
138
+ class EqualLinear(nn.Module):
139
+ def __init__(
140
+ self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
141
+ ):
142
+ super().__init__()
143
+
144
+ self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
145
+
146
+ if bias:
147
+ self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
148
+
149
+ else:
150
+ self.bias = None
151
+
152
+ self.activation = activation
153
+
154
+ self.scale = (1 / math.sqrt(in_dim)) * lr_mul
155
+ self.lr_mul = lr_mul
156
+
157
+ def forward(self, input):
158
+ if self.activation:
159
+ out = F.linear(input, self.weight * self.scale)
160
+ out = fused_leaky_relu(out, self.bias * self.lr_mul)
161
+
162
+ else:
163
+ out = F.linear(
164
+ input, self.weight * self.scale, bias=self.bias * self.lr_mul
165
+ )
166
+
167
+ return out
168
+
169
+ def __repr__(self):
170
+ return (
171
+ f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
172
+ )
173
+
174
+
175
+ class ModulatedConv2d(nn.Module):
176
+ def __init__(
177
+ self,
178
+ in_channel,
179
+ out_channel,
180
+ kernel_size,
181
+ style_dim,
182
+ demodulate=True,
183
+ upsample=False,
184
+ downsample=False,
185
+ blur_kernel=[1, 3, 3, 1],
186
+ fused=True,
187
+ ):
188
+ super().__init__()
189
+
190
+ self.eps = 1e-8
191
+ self.kernel_size = kernel_size
192
+ self.in_channel = in_channel
193
+ self.out_channel = out_channel
194
+ self.upsample = upsample
195
+ self.downsample = downsample
196
+
197
+ if upsample:
198
+ factor = 2
199
+ p = (len(blur_kernel) - factor) - (kernel_size - 1)
200
+ pad0 = (p + 1) // 2 + factor - 1
201
+ pad1 = p // 2 + 1
202
+
203
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
204
+
205
+ if downsample:
206
+ factor = 2
207
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
208
+ pad0 = (p + 1) // 2
209
+ pad1 = p // 2
210
+
211
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1))
212
+
213
+ fan_in = in_channel * kernel_size ** 2
214
+ self.scale = 1 / math.sqrt(fan_in)
215
+ self.padding = kernel_size // 2
216
+
217
+ self.weight = nn.Parameter(
218
+ torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
219
+ )
220
+
221
+ self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
222
+
223
+ self.demodulate = demodulate
224
+ self.fused = fused
225
+
226
+ def __repr__(self):
227
+ return (
228
+ f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
229
+ f"upsample={self.upsample}, downsample={self.downsample})"
230
+ )
231
+
232
+ def forward(self, input, style):
233
+ batch, in_channel, height, width = input.shape
234
+
235
+ if not self.fused:
236
+ weight = self.scale * self.weight.squeeze(0)
237
+ style = self.modulation(style)
238
+
239
+ if self.demodulate:
240
+ w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1)
241
+ dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt()
242
+
243
+ input = input * style.reshape(batch, in_channel, 1, 1)
244
+
245
+ if self.upsample:
246
+ weight = weight.transpose(0, 1)
247
+ out = conv2d_gradfix.conv_transpose2d(
248
+ input, weight, padding=0, stride=2
249
+ )
250
+ out = self.blur(out)
251
+
252
+ elif self.downsample:
253
+ input = self.blur(input)
254
+ out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2)
255
+
256
+ else:
257
+ out = conv2d_gradfix.conv2d(input, weight, padding=self.padding)
258
+
259
+ if self.demodulate:
260
+ out = out * dcoefs.view(batch, -1, 1, 1)
261
+
262
+ return out
263
+
264
+ style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
265
+ weight = self.scale * self.weight * style
266
+
267
+ if self.demodulate:
268
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
269
+ weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
270
+
271
+ weight = weight.view(
272
+ batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
273
+ )
274
+
275
+ if self.upsample:
276
+ input = input.view(1, batch * in_channel, height, width)
277
+ weight = weight.view(
278
+ batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
279
+ )
280
+ weight = weight.transpose(1, 2).reshape(
281
+ batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
282
+ )
283
+ out = conv2d_gradfix.conv_transpose2d(
284
+ input, weight, padding=0, stride=2, groups=batch
285
+ )
286
+ _, _, height, width = out.shape
287
+ out = out.view(batch, self.out_channel, height, width)
288
+ out = self.blur(out)
289
+
290
+ elif self.downsample:
291
+ input = self.blur(input)
292
+ _, _, height, width = input.shape
293
+ input = input.view(1, batch * in_channel, height, width)
294
+ out = conv2d_gradfix.conv2d(
295
+ input, weight, padding=0, stride=2, groups=batch
296
+ )
297
+ _, _, height, width = out.shape
298
+ out = out.view(batch, self.out_channel, height, width)
299
+
300
+ else:
301
+ input = input.view(1, batch * in_channel, height, width)
302
+ out = conv2d_gradfix.conv2d(
303
+ input, weight, padding=self.padding, groups=batch
304
+ )
305
+ _, _, height, width = out.shape
306
+ out = out.view(batch, self.out_channel, height, width)
307
+
308
+ return out
309
+
310
+
311
+ class NoiseInjection(nn.Module):
312
+ def __init__(self):
313
+ super().__init__()
314
+
315
+ self.weight = nn.Parameter(torch.zeros(1))
316
+
317
+ def forward(self, image, noise=None):
318
+ if noise is None:
319
+ batch, _, height, width = image.shape
320
+ noise = image.new_empty(batch, 1, height, width).normal_()
321
+
322
+ return image + self.weight * noise
323
+
324
+
325
+ class ConstantInput(nn.Module):
326
+ def __init__(self, channel, size=4):
327
+ super().__init__()
328
+
329
+ self.input = nn.Parameter(torch.randn(1, channel, size, size))
330
+
331
+ def forward(self, input):
332
+ batch = input.shape[0]
333
+ out = self.input.repeat(batch, 1, 1, 1)
334
+
335
+ return out
336
+
337
+
338
+ class StyledConv(nn.Module):
339
+ def __init__(
340
+ self,
341
+ in_channel,
342
+ out_channel,
343
+ kernel_size,
344
+ style_dim,
345
+ upsample=False,
346
+ blur_kernel=[1, 3, 3, 1],
347
+ demodulate=True,
348
+ ):
349
+ super().__init__()
350
+
351
+ self.conv = ModulatedConv2d(
352
+ in_channel,
353
+ out_channel,
354
+ kernel_size,
355
+ style_dim,
356
+ upsample=upsample,
357
+ blur_kernel=blur_kernel,
358
+ demodulate=demodulate,
359
+ )
360
+
361
+ self.noise = NoiseInjection()
362
+ # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
363
+ # self.activate = ScaledLeakyReLU(0.2)
364
+ self.activate = FusedLeakyReLU(out_channel)
365
+
366
+ def forward(self, input, style, noise=None):
367
+ out = self.conv(input, style)
368
+ out = self.noise(out, noise=noise)
369
+ # out = out + self.bias
370
+ out = self.activate(out)
371
+
372
+ return out
373
+
374
+
375
+ class ToRGB(nn.Module):
376
+ def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
377
+ super().__init__()
378
+
379
+ if upsample:
380
+ self.upsample = Upsample(blur_kernel)
381
+
382
+ self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
383
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
384
+
385
+ def forward(self, input, style, skip=None):
386
+ out = self.conv(input, style)
387
+ out = out + self.bias
388
+
389
+ if skip is not None:
390
+ skip = self.upsample(skip)
391
+
392
+ out = out + skip
393
+
394
+ return out
395
+
396
+
397
+ class Generator(nn.Module):
398
+ def __init__(
399
+ self,
400
+ size,
401
+ style_dim,
402
+ n_mlp,
403
+ channel_multiplier=2,
404
+ blur_kernel=[1, 3, 3, 1],
405
+ lr_mlp=0.01,
406
+ ):
407
+ super().__init__()
408
+
409
+ self.size = size
410
+
411
+ self.style_dim = style_dim
412
+
413
+ layers = [PixelNorm()]
414
+
415
+ for i in range(n_mlp):
416
+ layers.append(
417
+ EqualLinear(
418
+ style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
419
+ )
420
+ )
421
+
422
+ self.style = nn.Sequential(*layers)
423
+
424
+ self.channels = {
425
+ 4: 512,
426
+ 8: 512,
427
+ 16: 512,
428
+ 32: 512,
429
+ 64: 256 * channel_multiplier,
430
+ 128: 128 * channel_multiplier,
431
+ 256: 64 * channel_multiplier,
432
+ 512: 32 * channel_multiplier,
433
+ 1024: 16 * channel_multiplier,
434
+ }
435
+
436
+ self.input = ConstantInput(self.channels[4])
437
+ self.conv1 = StyledConv(
438
+ self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
439
+ )
440
+ self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
441
+
442
+ self.log_size = int(math.log(size, 2))
443
+ self.num_layers = (self.log_size - 2) * 2 + 1
444
+
445
+ self.convs = nn.ModuleList()
446
+ self.upsamples = nn.ModuleList()
447
+ self.to_rgbs = nn.ModuleList()
448
+ self.noises = nn.Module()
449
+
450
+ in_channel = self.channels[4]
451
+
452
+ for layer_idx in range(self.num_layers):
453
+ res = (layer_idx + 5) // 2
454
+ shape = [1, 1, 2 ** res, 2 ** res]
455
+ self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
456
+
457
+ for i in range(3, self.log_size + 1):
458
+ out_channel = self.channels[2 ** i]
459
+
460
+ self.convs.append(
461
+ StyledConv(
462
+ in_channel,
463
+ out_channel,
464
+ 3,
465
+ style_dim,
466
+ upsample=True,
467
+ blur_kernel=blur_kernel,
468
+ )
469
+ )
470
+
471
+ self.convs.append(
472
+ StyledConv(
473
+ out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
474
+ )
475
+ )
476
+
477
+ self.to_rgbs.append(ToRGB(out_channel, style_dim))
478
+
479
+ in_channel = out_channel
480
+
481
+ self.n_latent = self.log_size * 2 - 2
482
+
483
+ def make_noise(self):
484
+ device = self.input.input.device
485
+
486
+ noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
487
+
488
+ for i in range(3, self.log_size + 1):
489
+ for _ in range(2):
490
+ noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
491
+
492
+ return noises
493
+
494
+ @torch.no_grad()
495
+ def mean_latent(self, n_latent):
496
+ latent_in = torch.randn(
497
+ n_latent, self.style_dim, device=self.input.input.device
498
+ )
499
+ latent = self.style(latent_in).mean(0, keepdim=True)
500
+
501
+ return latent
502
+
503
+ @torch.no_grad()
504
+ def get_latent(self, input):
505
+ return self.style(input)
506
+
507
+ def forward(
508
+ self,
509
+ styles,
510
+ return_latents=False,
511
+ inject_index=None,
512
+ truncation=1,
513
+ truncation_latent=None,
514
+ input_is_latent=False,
515
+ noise=None,
516
+ randomize_noise=True,
517
+ ):
518
+
519
+ if noise is None:
520
+ if randomize_noise:
521
+ noise = [None] * self.num_layers
522
+ else:
523
+ noise = [
524
+ getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
525
+ ]
526
+
527
+ if not input_is_latent:
528
+ styles = [self.style(s) for s in styles]
529
+
530
+ if truncation < 1:
531
+ style_t = []
532
+
533
+ for style in styles:
534
+ style_t.append(
535
+ truncation_latent + truncation * (style - truncation_latent)
536
+ )
537
+
538
+ styles = style_t
539
+ latent = styles[0].unsqueeze(1).repeat(1, self.n_latent, 1)
540
+ else:
541
+ latent = styles
542
+
543
+ out = self.input(latent)
544
+ out = self.conv1(out, latent[:, 0], noise=noise[0])
545
+
546
+ skip = self.to_rgb1(out, latent[:, 1])
547
+
548
+ i = 1
549
+ for conv1, conv2, noise1, noise2, to_rgb in zip(
550
+ self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
551
+ ):
552
+ out = conv1(out, latent[:, i], noise=noise1)
553
+ out = conv2(out, latent[:, i + 1], noise=noise2)
554
+ skip = to_rgb(out, latent[:, i + 2], skip)
555
+
556
+ i += 2
557
+
558
+ image = skip
559
+
560
+ return image
561
+
562
+
563
+ class ConvLayer(nn.Sequential):
564
+ def __init__(
565
+ self,
566
+ in_channel,
567
+ out_channel,
568
+ kernel_size,
569
+ downsample=False,
570
+ blur_kernel=[1, 3, 3, 1],
571
+ bias=True,
572
+ activate=True,
573
+ ):
574
+ layers = []
575
+
576
+ if downsample:
577
+ factor = 2
578
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
579
+ pad0 = (p + 1) // 2
580
+ pad1 = p // 2
581
+
582
+ layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
583
+
584
+ stride = 2
585
+ self.padding = 0
586
+
587
+ else:
588
+ stride = 1
589
+ self.padding = kernel_size // 2
590
+
591
+ layers.append(
592
+ EqualConv2d(
593
+ in_channel,
594
+ out_channel,
595
+ kernel_size,
596
+ padding=self.padding,
597
+ stride=stride,
598
+ bias=bias and not activate,
599
+ )
600
+ )
601
+
602
+ if activate:
603
+ layers.append(FusedLeakyReLU(out_channel, bias=bias))
604
+
605
+ super().__init__(*layers)
606
+
607
+
608
+ class ResBlock(nn.Module):
609
+ def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
610
+ super().__init__()
611
+
612
+ self.conv1 = ConvLayer(in_channel, in_channel, 3)
613
+ self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
614
+
615
+ self.skip = ConvLayer(
616
+ in_channel, out_channel, 1, downsample=True, activate=False, bias=False
617
+ )
618
+
619
+ def forward(self, input):
620
+ out = self.conv1(input)
621
+ out = self.conv2(out)
622
+
623
+ skip = self.skip(input)
624
+ out = (out + skip) / math.sqrt(2)
625
+
626
+ return out
627
+
628
+
629
+ class Discriminator(nn.Module):
630
+ def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
631
+ super().__init__()
632
+
633
+ channels = {
634
+ 4: 512,
635
+ 8: 512,
636
+ 16: 512,
637
+ 32: 512,
638
+ 64: 256 * channel_multiplier,
639
+ 128: 128 * channel_multiplier,
640
+ 256: 64 * channel_multiplier,
641
+ 512: 32 * channel_multiplier,
642
+ 1024: 16 * channel_multiplier,
643
+ }
644
+
645
+ convs = [ConvLayer(3, channels[size], 1)]
646
+
647
+ log_size = int(math.log(size, 2))
648
+
649
+ in_channel = channels[size]
650
+
651
+ for i in range(log_size, 2, -1):
652
+ out_channel = channels[2 ** (i - 1)]
653
+
654
+ convs.append(ResBlock(in_channel, out_channel, blur_kernel))
655
+
656
+ in_channel = out_channel
657
+
658
+ self.convs = nn.Sequential(*convs)
659
+
660
+ self.stddev_group = 4
661
+ self.stddev_feat = 1
662
+
663
+ self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
664
+ self.final_linear = nn.Sequential(
665
+ EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
666
+ EqualLinear(channels[4], 1),
667
+ )
668
+
669
+ def forward(self, input):
670
+ out = self.convs(input)
671
+
672
+ batch, channel, height, width = out.shape
673
+ group = min(batch, self.stddev_group)
674
+ stddev = out.view(
675
+ group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
676
+ )
677
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
678
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
679
+ stddev = stddev.repeat(group, 1, height, width)
680
+ out = torch.cat([out, stddev], 1)
681
+
682
+ out = self.final_conv(out)
683
+
684
+ out = out.view(batch, -1)
685
+ out = self.final_linear(out)
686
+
687
+ return out
688
+
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ tqdm
2
+ gdown
3
+ scikit-learn==0.22
4
+ scipy
5
+ lpips
6
+ opencv-python-headless
7
+ torch
8
+ torchvision
9
+ imageio
10
+ dlib
util.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from matplotlib import pyplot as plt
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import os
5
+ import cv2
6
+ import dlib
7
+ from PIL import Image
8
+ import numpy as np
9
+ import math
10
+ import torchvision
11
+ import scipy
12
+ import scipy.ndimage
13
+ import torchvision.transforms as transforms
14
+
15
+ from huggingface_hub import hf_hub_download
16
+
17
+
18
+ shape_predictor_path = hf_hub_download(repo_id="aijackliu/jojogan", filename="face_landmarks.dat")
19
+
20
+
21
+ google_drive_paths = {
22
+
23
+ }
24
+
25
+ @torch.no_grad()
26
+ def load_model(generator, model_file_path):
27
+ ensure_checkpoint_exists(model_file_path)
28
+ ckpt = torch.load(model_file_path, map_location=lambda storage, loc: storage)
29
+ generator.load_state_dict(ckpt["g_ema"], strict=False)
30
+ return generator.mean_latent(50000)
31
+
32
+ def ensure_checkpoint_exists(model_weights_filename):
33
+ if not os.path.isfile(model_weights_filename) and (
34
+ model_weights_filename in google_drive_paths
35
+ ):
36
+ gdrive_url = google_drive_paths[model_weights_filename]
37
+ try:
38
+ from gdown import download as drive_download
39
+
40
+ drive_download(gdrive_url, model_weights_filename, quiet=False)
41
+ except ModuleNotFoundError:
42
+ print(
43
+ "gdown module not found.",
44
+ "pip3 install gdown or, manually download the checkpoint file:",
45
+ gdrive_url
46
+ )
47
+
48
+ if not os.path.isfile(model_weights_filename) and (
49
+ model_weights_filename not in google_drive_paths
50
+ ):
51
+ print(
52
+ model_weights_filename,
53
+ " not found, you may need to manually download the model weights."
54
+ )
55
+
56
+ # given a list of filenames, load the inverted style code
57
+ @torch.no_grad()
58
+ def load_source(files, generator, device='cuda'):
59
+ sources = []
60
+
61
+ for file in files:
62
+ source = torch.load(f'./inversion_codes/{file}.pt')['latent'].to(device)
63
+
64
+ if source.size(0) != 1:
65
+ source = source.unsqueeze(0)
66
+
67
+ if source.ndim == 3:
68
+ source = generator.get_latent(source, truncation=1, is_latent=True)
69
+ source = list2style(source)
70
+
71
+ sources.append(source)
72
+
73
+ sources = torch.cat(sources, 0)
74
+ if type(sources) is not list:
75
+ sources = style2list(sources)
76
+
77
+ return sources
78
+
79
+ def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
80
+ # image is [3,h,w] or [1,3,h,w] tensor [0,1]
81
+ if not isinstance(image, torch.Tensor):
82
+ image = transforms.ToTensor()(image).unsqueeze(0)
83
+ if image.is_cuda:
84
+ image = image.cpu()
85
+ if size is not None and image.size(-1) != size:
86
+ image = F.interpolate(image, size=(size,size), mode=mode)
87
+ if image.dim() == 4:
88
+ image = image[0]
89
+ image = image.permute(1, 2, 0).detach().numpy()
90
+ plt.figure()
91
+ plt.title(title)
92
+ plt.axis('off')
93
+ plt.imshow(image)
94
+
95
+ def get_landmark(filepath, predictor):
96
+ """get landmark with dlib
97
+ :return: np.array shape=(68, 2)
98
+ """
99
+ detector = dlib.get_frontal_face_detector()
100
+
101
+ img = dlib.load_rgb_image(filepath)
102
+ dets = detector(img, 1)
103
+ assert len(dets) > 0, "Face not detected, try another face image"
104
+
105
+ for k, d in enumerate(dets):
106
+ shape = predictor(img, d)
107
+
108
+ t = list(shape.parts())
109
+ a = []
110
+ for tt in t:
111
+ a.append([tt.x, tt.y])
112
+ lm = np.array(a)
113
+ return lm
114
+
115
+
116
+ def align_face(filepath, output_size=256, transform_size=1024, enable_padding=True):
117
+
118
+ """
119
+ :param filepath: str
120
+ :return: PIL Image
121
+ """
122
+ predictor = dlib.shape_predictor(shape_predictor_path)
123
+ lm = get_landmark(filepath, predictor)
124
+
125
+ lm_chin = lm[0: 17] # left-right
126
+ lm_eyebrow_left = lm[17: 22] # left-right
127
+ lm_eyebrow_right = lm[22: 27] # left-right
128
+ lm_nose = lm[27: 31] # top-down
129
+ lm_nostrils = lm[31: 36] # top-down
130
+ lm_eye_left = lm[36: 42] # left-clockwise
131
+ lm_eye_right = lm[42: 48] # left-clockwise
132
+ lm_mouth_outer = lm[48: 60] # left-clockwise
133
+ lm_mouth_inner = lm[60: 68] # left-clockwise
134
+
135
+ # Calculate auxiliary vectors.
136
+ eye_left = np.mean(lm_eye_left, axis=0)
137
+ eye_right = np.mean(lm_eye_right, axis=0)
138
+ eye_avg = (eye_left + eye_right) * 0.5
139
+ eye_to_eye = eye_right - eye_left
140
+ mouth_left = lm_mouth_outer[0]
141
+ mouth_right = lm_mouth_outer[6]
142
+ mouth_avg = (mouth_left + mouth_right) * 0.5
143
+ eye_to_mouth = mouth_avg - eye_avg
144
+
145
+ # Choose oriented crop rectangle.
146
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
147
+ x /= np.hypot(*x)
148
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
149
+ y = np.flipud(x) * [-1, 1]
150
+ c = eye_avg + eye_to_mouth * 0.1
151
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
152
+ qsize = np.hypot(*x) * 2
153
+
154
+ # read image
155
+ img = Image.open(filepath)
156
+
157
+ transform_size = output_size
158
+ enable_padding = True
159
+
160
+ # Shrink.
161
+ shrink = int(np.floor(qsize / output_size * 0.5))
162
+ if shrink > 1:
163
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
164
+ img = img.resize(rsize, Image.ANTIALIAS)
165
+ quad /= shrink
166
+ qsize /= shrink
167
+
168
+ # Crop.
169
+ border = max(int(np.rint(qsize * 0.1)), 3)
170
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
171
+ int(np.ceil(max(quad[:, 1]))))
172
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
173
+ min(crop[3] + border, img.size[1]))
174
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
175
+ img = img.crop(crop)
176
+ quad -= crop[0:2]
177
+
178
+ # Pad.
179
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
180
+ int(np.ceil(max(quad[:, 1]))))
181
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
182
+ max(pad[3] - img.size[1] + border, 0))
183
+ if enable_padding and max(pad) > border - 4:
184
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
185
+ img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
186
+ h, w, _ = img.shape
187
+ y, x, _ = np.ogrid[:h, :w, :1]
188
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
189
+ 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
190
+ blur = qsize * 0.02
191
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
192
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
193
+ img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
194
+ quad += pad[:2]
195
+
196
+ # Transform.
197
+ img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
198
+ if output_size < transform_size:
199
+ img = img.resize((output_size, output_size), Image.ANTIALIAS)
200
+
201
+ # Return aligned image.
202
+ return img
203
+
204
+ def strip_path_extension(path):
205
+ return os.path.splitext(path)[0]