File size: 5,414 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import logging
from datetime import datetime
from pathlib import Path

import gradio as gr
import torch
import torchaudio

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

log = logging.getLogger()

device = 'cuda'
dtype = torch.bfloat16

model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')

setup_eval_logging()


def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    seq_cfg = model.seq_cfg

    net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
    net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
    log.info(f'Loaded weights from {model.model_path}')

    feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
                                  synchformer_ckpt=model.synchformer_ckpt,
                                  enable_conditions=True,
                                  mode=model.mode,
                                  bigvgan_vocoder_ckpt=model.bigvgan_16k_path)
    feature_utils = feature_utils.to(device, dtype).eval()

    return net, feature_utils, seq_cfg


net, feature_utils, seq_cfg = get_model()


@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
                   cfg_strength: float, duration: float):

    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames, sync_frames, duration = load_video(video, duration)
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir.mkdir(exist_ok=True, parents=True)
    video_save_path = output_dir / f'{current_time_string}.mp4'
    make_video(video,
               video_save_path,
               audio,
               sampling_rate=seq_cfg.sampling_rate,
               duration_sec=seq_cfg.duration)
    return video_save_path


@torch.inference_mode()
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
                  duration: float):

    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames = sync_frames = None
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir.mkdir(exist_ok=True, parents=True)
    audio_save_path = output_dir / f'{current_time_string}.flac'
    torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
    return audio_save_path


video_to_audio_tab = gr.Interface(
    fn=video_to_audio,
    inputs=[
        gr.Video(),
        gr.Text(label='Prompt'),
        gr.Text(label='Negative prompt', value='music'),
        gr.Number(label='Seed', value=0, precision=0, minimum=0),
        gr.Number(label='Num steps', value=25, precision=0, minimum=1),
        gr.Number(label='Guidance Strength', value=4.5, minimum=1),
        gr.Number(label='Duration (sec)', value=8, minimum=1),
    ],
    outputs='playable_video',
    cache_examples=False,
    title='MMAudio — Video-to-Audio Synthesis',
)

text_to_audio_tab = gr.Interface(
    fn=text_to_audio,
    inputs=[
        gr.Text(label='Prompt'),
        gr.Text(label='Negative prompt'),
        gr.Number(label='Seed', value=0, precision=0, minimum=0),
        gr.Number(label='Num steps', value=25, precision=0, minimum=1),
        gr.Number(label='Guidance Strength', value=4.5, minimum=1),
        gr.Number(label='Duration (sec)', value=8, minimum=1),
    ],
    outputs='audio',
    cache_examples=False,
    title='MMAudio — Text-to-Audio Synthesis',
)

if __name__ == "__main__":
    gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab],
                       ['Video-to-Audio', 'Text-to-Audio']).launch(server_port=17888,
                                                                   allowed_paths=[output_dir])