File size: 8,682 Bytes
4356fca
a997f34
4356fca
 
8f558df
4356fca
 
 
 
f6a98e4
97313a7
4356fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c389f5e
4356fca
c389f5e
4356fca
c389f5e
4356fca
c389f5e
4356fca
c389f5e
4356fca
c389f5e
4356fca
 
ae0aef7
 
 
 
 
8f558df
4356fca
c389f5e
4356fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a98e4
4356fca
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/flux-lora-military-artillery-k9"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    # Return empty list since we're not using predefined images
    return []

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return the image, seed, and updated gallery
    return image, seed, load_generated_images()

examples = [
    "K9 Thunder self-propelled artillery positioned on a strategic hilltop at dawn, its 155mm barrel gleaming in the morning light. The massive tracks leave deep impressions in the terrain, while advanced fire control systems and thermal imaging displays glow inside the cabin. The morning mist swirls around its imposing silhouette. [trigger]",
    
    "K9 Thunder demonstrating rapid fire capability during a winter exercise, snow flying from its tracks as it maneuvers. The 52-caliber gun barrel elevates smoothly while automated loading systems efficiently handle the ammunition. Artillery crew in winter camouflage coordinate the precision fire mission. [trigger]",
    
    "K9 Thunder crossing a reinforced bridge during monsoon season, its advanced suspension system handling the challenging terrain. Water beads off its defensive armor plating while the turret rotates, testing weapon stabilization. The military green finish contrasts with the stormy sky. [trigger]",
    
    "K9 Thunder in desert deployment configuration, its advanced cooling systems handling the extreme heat. The extended range ammunition is being loaded while diagnostic systems monitor performance. Sand-colored camouflage blends with the arid environment as heat waves distort the horizon. [trigger]",
    
    "K9 Thunder conducting a night fire mission, muzzle flash illuminating the darkness. The automated fire control system displays light up the cabin interior while thermal imaging systems scan the target area. The powerful engine rumbles as it adjusts position between salvos. [trigger]",
    
    "K9 Thunder during a combined arms exercise, coordinating with reconnaissance drones and forward observers. Its digital battle management system processes target data while the hydraulic stabilizers deploy. Modern combat networking equipment connects it to the battlefield grid as supporting units move into position. [trigger]"
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title"> FLUX LoRA Military K9</div>')
    gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')

    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column(elem_id="col-container"):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gallery_header = gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("🔄 Refresh Gallery")


    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()