File size: 9,051 Bytes
5cfd8a9 917b084 5cfd8a9 72ca181 5cfd8a9 8b3be6a 5cfd8a9 917b084 5cfd8a9 917b084 5cfd8a9 917b084 5cfd8a9 72ca181 5cfd8a9 8b3be6a 5cfd8a9 2638861 5cfd8a9 8b3be6a 5cfd8a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
from openai import OpenAI
# from unsloth import FastLanguageModel
class AI_Songwriter:
def __init__(self, client_key):
self.oai_client = OpenAI(api_key=client_key)
# max_seq_length = 3072 # Choose any! We auto support RoPE Scaling internally!
# dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
# load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# model, tokenizer = FastLanguageModel.from_pretrained(
# model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
# max_seq_length = max_seq_length,
# dtype = dtype,
# load_in_4bit = load_in_4bit,
# )
# FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# self.model=model
# self.tokenizer=tokenizer
self.alpaca_prompt = """Below is an instruction that describes a songwriting task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
def ask_question(self, messages):
convo = messages[:-1]
instruction = "Based on this conversation history, respond to the user acknowledging their most recent response and ask a concise question to further learn more about the user's story."
## iterate thru messages and format them into a single string where each message is separated by a newline (ie Assistant: ...\n User: ...\n)
convo_str = ""
for message in convo:
convo_str += f"{message['role']}: {message['content']}\n"
convo_str += "Assistant:"
input = f"{instruction}\nConversation History:\n{convo_str}"
response = self.oai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": input
}
],
)
return response.choices[0].message.content
def write_section(self, section_name, section_description, relevant_ideas, section_length, sections_written=None, overall_song_description=None):
instruction = f"Write a {section_name} of length {section_length} that that incorporates the following ideas"
if sections_written is not None:
instruction += "and complements the sections provided."
else:
instruction += "."
instruction += "You are also given a section description, genre, era, and overall description of the song. Please do not literally quote and incorporate the ideas - use simple language, short lines, and be poetic and incorporate them artistically to express the emotion. "
## read in prompt lyrics from convo .txt and add it to instruction
with open("prompts/write_section_ex.txt", "r") as f:
convo = f.read()
instruction += "Here's an example:\n{convo}\nNow do it for this input:"
input = f"""Ideas to use:
- {relevant_ideas}
Section Description: {section_description}
Genre: Songwriter Pop
Era: 2010s
Overall song description: {overall_song_description}
"""
if sections_written is not None:
written_sections = "\n".join(sections_written)
input += f"Sections provided:\n{written_sections}\nLyrics:"
else:
input += "\nLyrics:"
prompt = self.alpaca_prompt.format(instruction, input, "")
convo = [
{
"role": "user",
"content": prompt,
},
]
response = self.oai_client.chat.completions.create(
model="gpt-4o",
messages=convo,
)
return "Pass this back to the user and ask if they would like to receive an audio snippet or make any revisions before moving to the next section: \n" + response.choices[0].message.content
def revise_section_lyrics(self, section_name, current_section, lines_to_revise, relevant_ideas=None, relevant_words=None):
lines_to_infill = ", ".join([str(x) for x in lines_to_revise])
full_incomplete_verse = current_section.strip("\n ").split("\n")
max_line_num = max(lines_to_revise)
if max_line_num > len(full_incomplete_verse):
full_incomplete_verse.extend([''] * (max_line_num - len(full_incomplete_verse)))
for line_num in lines_to_revise:
if line_num <= len(full_incomplete_verse):
full_incomplete_verse[line_num-1] = '___'
line_phrase = "lines" if len(lines_to_infill) > 1 else "line"
line_phrase = str(len(lines_to_infill)) + " " + line_phrase
instruction = f"Infill the remaining {line_phrase} into {section_name}"
if relevant_ideas is not None or relevant_words is not None:
instruction += " while incorporating the following "
if relevant_ideas is not None:
instruction += "ideas"
if relevant_words is not None:
instruction += "and words."
else:
instruction += "."
else:
instruction += "words."
else:
instruction += "."
instruction += "You are also given a genre, era, and the rest of the section. Please do not literally quote and incorporate the ideas - use simple language, short lines, and be poetic and incorporate them artistically to express the emotion. "
with open("prompts/revise_section_ex.txt", "r") as f:
convo = f.read()
instruction += "Here's an example:\n{convo}\nNow do it for this input:"
input = ""
if relevant_ideas is not None and isinstance(relevant_ideas, list):
input += f"Ideas to use: {', '.join(relevant_ideas)}\n"
if relevant_words is not None and isinstance(relevant_words, list):
input += f"Words to use: {', '.join(relevant_words)}\n"
input += f"Genre: Songwriter Pop\nEra: 2010s\nCurrent section:\n{full_incomplete_verse}\n\nLyrics:"
prompt = self.alpaca_prompt.format(instruction, input, "")
convo = [
{
"role": "user",
"content": prompt,
},
]
response = self.oai_client.chat.completions.create(
model="gpt-4o",
messages=convo,
)
return response.choices[0].message.content
def revise_instrumental_tags(self, current_instrumental_tags, user_instrumental_feedback):
instruction = "Revise the current instrumental tags to better match the feedback provided:"
input = f"""Current instrumental tags: {current_instrumental_tags}\ninstrumental feedback: {user_instrumental_feedback}\nNew tags:"""
prompt = self.alpaca_prompt.format(instruction, input, "")
convo = [
{
"role": "user",
"content": prompt,
},
]
response = self.oai_client.chat.completions.create(
model="gpt-4o",
messages=convo,
)
return response.choices[0].message.content.split("New tags:")[-1].strip("\n ")
def write_all_lyrics(self, sections_to_be_written, sections_written, overall_song_description):
instruction = "Write the remainder of this full song given an overall description of the song, genre, era, and a description of the sections to complete:"
with open("prompts/write_full_song_ex.txt", "r") as f:
convo = f.read()
instruction += "Here's an example:\n{convo}\nNow do it for this input:"
sections_to_write = [x['section_name'] for x in sections_to_be_written]
sections_to_write_str = ", ".join(sections_to_write)
section_descriptions = [x['section_description'] for x in sections_to_be_written]
full_meanings = "\n".join([f"{sections_to_write[i]}: {section_descriptions[i]}" for i in range(len(sections_to_write))])
input = f"Sections to write: {sections_to_write_str}\nOverall song description: {overall_song_description}\nGenre: Songwriter Pop\nEra: 2010s\nSection Descriptions:\n{full_meanings}"
if sections_written is not None:
written_sections = "\n".join(sections_written)
input += f"Sections provided:\n{written_sections}\n\nLyrics:"
else:
input += "\n\nLyrics:"
prompt = self.alpaca_prompt.format(instruction, input, "")
convo = [
{
"role": "user",
"content": prompt,
},
]
response = self.oai_client.chat.completions.create(
model="gpt-4o",
messages=convo,
)
return response.choices[0].message.content
|