Spaces:
Sleeping
Sleeping
File size: 2,550 Bytes
fdd82d8 3330dd3 f211efc 3330dd3 fdd82d8 3330dd3 5fe62c5 fdd82d8 3330dd3 f211efc 3330dd3 f211efc 3330dd3 fdd82d8 3330dd3 f211efc 3330dd3 f211efc 3330dd3 f211efc 3330dd3 fdd82d8 f211efc fdd82d8 3330dd3 fdd82d8 f211efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
import torch
from datasets import load_dataset
import random
# Load the DistilBERT model and tokenizer
model_name = "distilbert/distilbert-base-cased-distilled-squad"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
# Load the Bhagavad Gita dataset
ds = load_dataset("knowrohit07/gita_dataset")
def get_relevant_context(question):
# Randomly select 5 records to form the context
selected_records = random.sample(ds['train'], 5)
context = " ".join([record['Text'] for record in selected_records])
return context
def generate_response(question):
context = get_relevant_context(question)
# Encode the question and context
inputs = tokenizer.encode_plus(question, context, add_special_tokens=True, return_tensors="pt", max_length=512, truncation=True)
# Get the answer
with torch.no_grad():
outputs = model(**inputs)
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
# If the model couldn't find an answer, provide a default response
if answer == "" or answer == "[CLS]" or answer == "[SEP]":
answer = "I'm sorry, but I couldn't find a specific answer to that question in the Bhagavad Gita. Could you please rephrase your question or ask about a different topic from the Gita?"
# Add a disclaimer
disclaimer = "\n\nPlease note: This response is generated by an AI model based on the Bhagavad Gita dataset. For authoritative information, please consult the original text or scholarly sources."
return answer + disclaimer
# Create the Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Enter your question about the Bhagavad Gita here..."),
outputs="text",
title="Bhagavad Gita Q&A Assistant",
description="Ask questions about the Bhagavad Gita. The AI will attempt to provide answers based on the text.",
examples=[
["What is the main message of the Bhagavad Gita?"],
["Who is Krishna in the Bhagavad Gita?"],
["What does the Gita say about dharma?"],
["How does the Bhagavad Gita define yoga?"],
["What is the significance of Arjuna's dilemma?"]
]
)
# Launch the interface
iface.launch() |