Spaces:
Sleeping
Sleeping
ajaynagotha
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
from sentence_transformers import SentenceTransformer, util
|
4 |
-
import torch
|
5 |
-
from datasets import load_dataset
|
6 |
|
7 |
-
# Load the model and tokenizer
|
8 |
model_name = "google/flan-t5-xl"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
def find_relevant_texts(query, top_k=3):
|
25 |
-
query_embedding = sentence_model.encode(query, convert_to_tensor=True)
|
26 |
-
cos_scores = util.cos_sim(query_embedding, text_embeddings)[0]
|
27 |
-
top_results = torch.topk(cos_scores, k=top_k)
|
28 |
-
|
29 |
-
relevant_texts = []
|
30 |
-
for score, idx in zip(top_results[0], top_results[1]):
|
31 |
-
relevant_texts.append(f"Chapter {chapters[idx]}, Verses {sentence_ranges[idx]}: {texts[idx]}")
|
32 |
-
|
33 |
-
return "\n\n".join(relevant_texts)
|
34 |
|
35 |
def generate_response(question):
|
36 |
-
|
37 |
-
|
38 |
-
prompt = f"""Based on the following excerpts from the Bhagavad Gita, answer the question.
|
39 |
-
|
40 |
-
Relevant excerpts:
|
41 |
-
{relevant_texts}
|
42 |
-
|
43 |
-
Question: {question}
|
44 |
-
|
45 |
-
Answer:"""
|
46 |
-
|
47 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
48 |
outputs = model.generate(input_ids, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.95)
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
-
|
51 |
return response
|
52 |
|
53 |
iface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
3 |
|
|
|
4 |
model_name = "google/flan-t5-xl"
|
5 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
7 |
|
8 |
+
gita_context = """
|
9 |
+
The Bhagavad Gita is a 700-verse Hindu scripture that is part of the Indian epic Mahabharata. It is a dialogue between Prince Arjuna and Lord Krishna, who serves as his charioteer. The Gita's core message includes:
|
10 |
+
1. The immortality of the soul (Atman)
|
11 |
+
2. The nature of action (Karma) and duty (Dharma)
|
12 |
+
3. The importance of devotion (Bhakti)
|
13 |
+
4. The pursuit of knowledge (Jnana) and wisdom
|
14 |
+
5. Different types of Yoga: Karma Yoga, Bhakti Yoga, Jnana Yoga, and Raja Yoga
|
15 |
+
6. The concept of detachment from the fruits of one's actions
|
16 |
+
7. The divine nature of Krishna as an avatar of Vishnu
|
17 |
+
Key teachings include performing one's duty without attachment to results, the importance of self-realization, and the path to liberation (Moksha).
|
18 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def generate_response(question):
|
21 |
+
prompt = f"Based on the following context about the Bhagavad Gita, answer the question.\n\nContext: {gita_context}\n\nQuestion: {question}\n\nAnswer:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
23 |
outputs = model.generate(input_ids, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.95)
|
24 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
25 |
return response
|
26 |
|
27 |
iface = gr.Interface(
|