Arturo Jiménez de los Galanes Reguillos
Set do_sample=True
7dfeb8a
raw
history blame
1.72 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
MODEL = "NTQAI/Nxcode-CQ-7B-orpo"
system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance"
def user_prompt_for(python):
return f"Rewrite this python code to C++. You must search for the maximum performance. \
Format your response in Markdown. This is the python Code: \
\n\n\
{python}"
def messages_for(python):
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt_for(python)}
]
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype="auto", device_map="auto")
decode_kwargs = dict(skip_special_tokens=True)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, decode_kwargs=decode_kwargs)
cplusplus = None
def translate(python):
inputs = tokenizer.apply_chat_template(
messages_for(python),
add_generation_prompt=True,
return_tensors="pt").to(model.device)
generation_kwargs = dict(
input_ids=inputs,
streamer=streamer,
max_new_tokens=512,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
cplusplus = ""
for chunk in streamer:
cplusplus += chunk
yield cplusplus
demo = gr.Interface(fn=translate, inputs="code", outputs="markdown")
demo.launch()