import gradio as gr from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread import torch MODEL = "m-a-p/OpenCodeInterpreter-DS-33B" system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance" def user_prompt_for(python): return f"Rewrite this python code to C++. You must search for the maximum performance. \ Format your response in Markdown. This is the python Code, between triple backticks: \ \n\n\ ```{python}```" def messages_for(python): return [ {"role": "system", "content": system_message}, {"role": "user", "content": user_prompt_for(python)} ] def apply_chat_template(messages): result = "" for message in messages: if message['role'] == 'system': result += f"{message['content']}\n" elif message['role'] == 'user': result += f"### Instruction:\n{message['content']}\n" else: result += f"### Response:\n{message['content']}\n<|EOT|>\n" return result tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, device_map="auto") model.eval() decode_kwargs = dict(skip_special_tokens=True) streamer = TextIteratorStreamer(tokenizer, decode_kwargs=decode_kwargs) cplusplus = None def translate(python): inputs = tokenizer(apply_chat_template(messages_for(python)), return_tensors="pt").to(model.device) generation_kwargs = dict( inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() cplusplus = "" for chunk in streamer: cplusplus += chunk yield cplusplus demo = gr.Interface(fn=translate, inputs="code", outputs="markdown") demo.launch()