First commit
Browse files- app.py +72 -0
- predict.py +113 -0
- requirements.txt +4 -0
- test.json +0 -0
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
2 |
+
import streamlit as st
|
3 |
+
import json
|
4 |
+
from predict import run_prediction
|
5 |
+
|
6 |
+
st.set_page_config(layout="wide")
|
7 |
+
|
8 |
+
model_list = ['roberta-base-cuad',
|
9 |
+
'roberta-large-cuad',
|
10 |
+
'deberta-xlarge-cuad']
|
11 |
+
st.sidebar.header("Select CUAD Model")
|
12 |
+
model_checkpoint = st.sidebar.radio("", model_list)
|
13 |
+
|
14 |
+
st.sidebar.write("Project: https://www.atticusprojectai.org/cuad")
|
15 |
+
st.sidebar.write("Git Hub: https://github.com/TheAtticusProject/cuad")
|
16 |
+
st.sidebar.write("CUAD Dataset: https://huggingface.co/datasets/cuad")
|
17 |
+
|
18 |
+
@st.cache(allow_output_mutation=True)
|
19 |
+
def load_model():
|
20 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint , use_fast=False)
|
22 |
+
return model, tokenizer
|
23 |
+
|
24 |
+
@st.cache(allow_output_mutation=True)
|
25 |
+
def load_questions():
|
26 |
+
with open('test.json') as json_file:
|
27 |
+
data = json.load(json_file)
|
28 |
+
|
29 |
+
questions = []
|
30 |
+
for i, q in enumerate(data['data'][0]['paragraphs'][0]['qas']):
|
31 |
+
question = data['data'][0]['paragraphs'][0]['qas'][i]['question']
|
32 |
+
questions.append(question)
|
33 |
+
return questions
|
34 |
+
|
35 |
+
@st.cache(allow_output_mutation=True)
|
36 |
+
def load_contracts():
|
37 |
+
with open('test.json') as json_file:
|
38 |
+
data = json.load(json_file)
|
39 |
+
|
40 |
+
contracts = []
|
41 |
+
for i, q in enumerate(data['data']):
|
42 |
+
contract = ' '.join(data['data'][i]['paragraphs'][0]['context'].split())
|
43 |
+
contracts.append(contract)
|
44 |
+
return contracts
|
45 |
+
|
46 |
+
model, tokenizer = load_model()
|
47 |
+
questions = load_questions()
|
48 |
+
contracts = load_contracts()
|
49 |
+
|
50 |
+
contract = contracts[0]
|
51 |
+
|
52 |
+
st.header("Contract Understanding Atticus Dataset (CUAD) Demo")
|
53 |
+
st.write("Based on https://github.com/marshmellow77/cuad-demo")
|
54 |
+
|
55 |
+
|
56 |
+
question = st.selectbox('Choose one of the 41 queries from the CUAD dataset:', questions)
|
57 |
+
# paragraph = st.text_area(label="Contract")
|
58 |
+
|
59 |
+
contract_type = st.radio("Select Contract", ("Sample Contract", "New Contract"))
|
60 |
+
if contract_type == "Sample Contract":
|
61 |
+
sample_contract_num = st.slider("Select Sample Contract #")
|
62 |
+
contract = contracts[sample_contract_num]
|
63 |
+
with st.expander(f"Sample Contract #{sample_contract_num}"):
|
64 |
+
st.write(contract)
|
65 |
+
else:
|
66 |
+
contract = st.text_area("Input New Contract", "", height=256)
|
67 |
+
|
68 |
+
Run_Button = st.button("Run", key=None)
|
69 |
+
if Run_Button == True and not len(contract)==0 and not len(question)==0:
|
70 |
+
|
71 |
+
prediction = run_prediction(question, contract, 'C:/Users/akden/Desktop/Legal NLP/CUAD/cuad-models/roberta-base/')
|
72 |
+
st.write("Answer: " + prediction.strip())
|
predict.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import time
|
3 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
4 |
+
|
5 |
+
from transformers import (
|
6 |
+
AutoConfig,
|
7 |
+
AutoModelForQuestionAnswering,
|
8 |
+
AutoTokenizer,
|
9 |
+
squad_convert_examples_to_features
|
10 |
+
)
|
11 |
+
|
12 |
+
from transformers.data.processors.squad import SquadResult, SquadV2Processor, SquadExample
|
13 |
+
from transformers.data.metrics.squad_metrics import compute_predictions_logits
|
14 |
+
|
15 |
+
def run_prediction(question_texts, context_text, model_path):
|
16 |
+
### Setting hyperparameters
|
17 |
+
max_seq_length = 512
|
18 |
+
doc_stride = 256
|
19 |
+
n_best_size = 1
|
20 |
+
max_query_length = 64
|
21 |
+
max_answer_length = 512
|
22 |
+
do_lower_case = False
|
23 |
+
null_score_diff_threshold = 0.0
|
24 |
+
|
25 |
+
# model_name_or_path = "../cuad-models/roberta-base/"
|
26 |
+
|
27 |
+
def to_list(tensor):
|
28 |
+
return tensor.detach().cpu().tolist()
|
29 |
+
|
30 |
+
config_class, model_class, tokenizer_class = (
|
31 |
+
AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer)
|
32 |
+
config = config_class.from_pretrained(model_path)
|
33 |
+
tokenizer = tokenizer_class.from_pretrained(
|
34 |
+
model_path, do_lower_case=True, use_fast=False)
|
35 |
+
model = model_class.from_pretrained(model_path, config=config)
|
36 |
+
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
model.to(device)
|
39 |
+
|
40 |
+
processor = SquadV2Processor()
|
41 |
+
examples = []
|
42 |
+
|
43 |
+
for i, question_text in enumerate(question_texts):
|
44 |
+
example = SquadExample(
|
45 |
+
qas_id=str(i),
|
46 |
+
question_text=question_text,
|
47 |
+
context_text=context_text,
|
48 |
+
answer_text=None,
|
49 |
+
start_position_character=None,
|
50 |
+
title="Predict",
|
51 |
+
answers=None,
|
52 |
+
)
|
53 |
+
|
54 |
+
examples.append(example)
|
55 |
+
|
56 |
+
features, dataset = squad_convert_examples_to_features(
|
57 |
+
examples=examples,
|
58 |
+
tokenizer=tokenizer,
|
59 |
+
max_seq_length=max_seq_length,
|
60 |
+
doc_stride=doc_stride,
|
61 |
+
max_query_length=max_query_length,
|
62 |
+
is_training=False,
|
63 |
+
return_dataset="pt",
|
64 |
+
threads=1,
|
65 |
+
)
|
66 |
+
|
67 |
+
eval_sampler = SequentialSampler(dataset)
|
68 |
+
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=10)
|
69 |
+
|
70 |
+
all_results = []
|
71 |
+
|
72 |
+
for batch in eval_dataloader:
|
73 |
+
model.eval()
|
74 |
+
batch = tuple(t.to(device) for t in batch)
|
75 |
+
|
76 |
+
with torch.no_grad():
|
77 |
+
inputs = {
|
78 |
+
"input_ids": batch[0],
|
79 |
+
"attention_mask": batch[1],
|
80 |
+
"token_type_ids": batch[2],
|
81 |
+
}
|
82 |
+
|
83 |
+
example_indices = batch[3]
|
84 |
+
|
85 |
+
outputs = model(**inputs)
|
86 |
+
|
87 |
+
for i, example_index in enumerate(example_indices):
|
88 |
+
eval_feature = features[example_index.item()]
|
89 |
+
unique_id = int(eval_feature.unique_id)
|
90 |
+
|
91 |
+
output = [to_list(output[i]) for output in outputs.to_tuple()]
|
92 |
+
|
93 |
+
start_logits, end_logits = output
|
94 |
+
result = SquadResult(unique_id, start_logits, end_logits)
|
95 |
+
all_results.append(result)
|
96 |
+
|
97 |
+
final_predictions = compute_predictions_logits(
|
98 |
+
all_examples=examples,
|
99 |
+
all_features=features,
|
100 |
+
all_results=all_results,
|
101 |
+
n_best_size=n_best_size,
|
102 |
+
max_answer_length=max_answer_length,
|
103 |
+
do_lower_case=do_lower_case,
|
104 |
+
output_prediction_file=None,
|
105 |
+
output_nbest_file=None,
|
106 |
+
output_null_log_odds_file=None,
|
107 |
+
verbose_logging=False,
|
108 |
+
version_2_with_negative=True,
|
109 |
+
null_score_diff_threshold=null_score_diff_threshold,
|
110 |
+
tokenizer=tokenizer
|
111 |
+
)
|
112 |
+
|
113 |
+
return final_predictions
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
json
|
test.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|