akhaliq's picture
akhaliq HF staff
Update app.py
98d425e
raw
history blame
5.8 kB
import os
os.system("pip freeze")
from huggingface_hub import hf_hub_download
os.system("pip -qq install facenet_pytorch")
from facenet_pytorch import MTCNN
from torchvision import transforms
import torch, PIL
from tqdm.notebook import tqdm
import gradio as gr
import torch
modelarcanev4 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.4", filename="ArcaneGANv0.4.jit")
modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit")
modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit")
mtcnn = MTCNN(image_size=256, margin=80)
# simplest ye olde trustworthy MTCNN for face detection with landmarks
def detect(img):
# Detect faces
batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True)
# Select faces
if not mtcnn.keep_all:
batch_boxes, batch_probs, batch_points = mtcnn.select_boxes(
batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method
)
return batch_boxes, batch_points
# my version of isOdd, should make a separate repo for it :D
def makeEven(_x):
return _x if (_x % 2 == 0) else _x+1
# the actual scaler function
def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False):
x, y = _img.size
ratio = 2 #initial ratio
#scale to desired face size
if (boxes is not None):
if len(boxes)>0:
ratio = target_face/max(boxes[0][2:]-boxes[0][:2]);
ratio = min(ratio, max_upscale)
if VERBOSE: print('up by', ratio)
if fixed_ratio>0:
if VERBOSE: print('fixed ratio')
ratio = fixed_ratio
x*=ratio
y*=ratio
#downscale to fit into max res
res = x*y
if res > max_res:
ratio = pow(res/max_res,1/2);
if VERBOSE: print(ratio)
x=int(x/ratio)
y=int(y/ratio)
#make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch
x = makeEven(int(x))
y = makeEven(int(y))
size = (x, y)
return _img.resize(size)
"""
A useful scaler algorithm, based on face detection.
Takes PIL.Image, returns a uniformly scaled PIL.Image
boxes: a list of detected bboxes
_img: PIL.Image
max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU.
target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension.
fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit.
max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess.
"""
def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False):
boxes = None
boxes, _ = detect(_img)
if VERBOSE: print('boxes',boxes)
img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE)
return img_resized
size = 256
means = [0.485, 0.456, 0.406]
stds = [0.229, 0.224, 0.225]
t_stds = torch.tensor(stds).cpu().half().float()[:,None,None]
t_means = torch.tensor(means).cpu().half().float()[:,None,None]
def makeEven(_x):
return int(_x) if (_x % 2 == 0) else int(_x+1)
img_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(means,stds)])
def tensor2im(var):
return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0)
def proc_pil_img(input_image, model):
transformed_image = img_transforms(input_image)[None,...].cpu().half().float()
with torch.no_grad():
result_image = model(transformed_image)[0]
output_image = tensor2im(result_image)
output_image = output_image.detach().cpu().numpy().astype('uint8')
output_image = PIL.Image.fromarray(output_image)
return output_image
modelv4 = torch.jit.load(modelarcanev4,map_location='cpu').eval().cpu().half().float()
modelv3 = torch.jit.load(modelarcanev3,map_location='cpu').eval().cpu().half().float()
modelv2 = torch.jit.load(modelarcanev2,map_location='cpu').eval().cpu().half().float()
def version4(im):
im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1)
res = proc_pil_img(im, modelv4)
return res
def version3(im):
im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1)
res = proc_pil_img(im, modelv3)
return res
def version2(im):
im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1)
res = proc_pil_img(im, modelv2)
return res
block = gr.Blocks()
with block:
gr.Markdown("Gradio Demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image. Try out the different versions by clicking on the tabs. Please use a cropped portrait picture for best results.")
with gr.Tab("version four"):
with gr.Row():
facepaint4 = gr.inputs.Image(type="pil",shape=(512,512))
faceout4 = gr.outputs.Image(type="pil")
face_run = gr.Button("Run")
face_run.click(version4, inputs=facepaint4, outputs=faceout4)
with gr.Tab("version three"):
with gr.Row():
facepaint3 = gr.inputs.Image(type="pil")
faceout3 = gr.outputs.Image(type="pil")
face_run = gr.Button("Run")
face_run.click(version3, inputs=facepaint3, outputs=faceout3)
with gr.Tab("version two"):
with gr.Row():
facepaint2 = gr.inputs.Image(type="pil")
faceout2 = gr.outputs.Image(type="pil")
face_run = gr.Button("Run")
face_run.click(version2, inputs=facepaint2, outputs=faceout2)
block.launch(enable_queue=True)