import os os.system("pip freeze") from huggingface_hub import hf_hub_download os.system("pip -qq install facenet_pytorch") from facenet_pytorch import MTCNN from torchvision import transforms import torch, PIL from tqdm.notebook import tqdm import gradio as gr import torch modelarcanev4 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.4", filename="ArcaneGANv0.4.jit") modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit") modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit") mtcnn = MTCNN(image_size=256, margin=80) # simplest ye olde trustworthy MTCNN for face detection with landmarks def detect(img): # Detect faces batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True) # Select faces if not mtcnn.keep_all: batch_boxes, batch_probs, batch_points = mtcnn.select_boxes( batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method ) return batch_boxes, batch_points # my version of isOdd, should make a separate repo for it :D def makeEven(_x): return _x if (_x % 2 == 0) else _x+1 # the actual scaler function def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False): x, y = _img.size ratio = 2 #initial ratio #scale to desired face size if (boxes is not None): if len(boxes)>0: ratio = target_face/max(boxes[0][2:]-boxes[0][:2]); ratio = min(ratio, max_upscale) if VERBOSE: print('up by', ratio) if fixed_ratio>0: if VERBOSE: print('fixed ratio') ratio = fixed_ratio x*=ratio y*=ratio #downscale to fit into max res res = x*y if res > max_res: ratio = pow(res/max_res,1/2); if VERBOSE: print(ratio) x=int(x/ratio) y=int(y/ratio) #make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch x = makeEven(int(x)) y = makeEven(int(y)) size = (x, y) return _img.resize(size) """ A useful scaler algorithm, based on face detection. Takes PIL.Image, returns a uniformly scaled PIL.Image boxes: a list of detected bboxes _img: PIL.Image max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU. target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension. fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit. max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess. """ def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False): boxes = None boxes, _ = detect(_img) if VERBOSE: print('boxes',boxes) img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE) return img_resized size = 256 means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] t_stds = torch.tensor(stds).cpu().half().float()[:,None,None] t_means = torch.tensor(means).cpu().half().float()[:,None,None] def makeEven(_x): return int(_x) if (_x % 2 == 0) else int(_x+1) img_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(means,stds)]) def tensor2im(var): return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0) def proc_pil_img(input_image, model): transformed_image = img_transforms(input_image)[None,...].cpu().half().float() with torch.no_grad(): result_image = model(transformed_image)[0] output_image = tensor2im(result_image) output_image = output_image.detach().cpu().numpy().astype('uint8') output_image = PIL.Image.fromarray(output_image) return output_image modelv4 = torch.jit.load(modelarcanev4,map_location='cpu').eval().cpu().half().float() modelv3 = torch.jit.load(modelarcanev3,map_location='cpu').eval().cpu().half().float() modelv2 = torch.jit.load(modelarcanev2,map_location='cpu').eval().cpu().half().float() def version4(im): im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) res = proc_pil_img(im, modelv4) return res def version3(im): im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) res = proc_pil_img(im, modelv3) return res def version2(im): im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) res = proc_pil_img(im, modelv2) return res block = gr.Blocks() with block: gr.Markdown("Gradio Demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image. Try out the different versions by clicking on the tabs. Please use a cropped portrait picture for best results.") with gr.Tab("version four"): with gr.Row(): facepaint4 = gr.inputs.Image(type="pil",shape=(512,512)) faceout4 = gr.outputs.Image(type="pil") face_run = gr.Button("Run") face_run.click(version4, inputs=facepaint4, outputs=faceout4) with gr.Tab("version three"): with gr.Row(): facepaint3 = gr.inputs.Image(type="pil") faceout3 = gr.outputs.Image(type="pil") face_run = gr.Button("Run") face_run.click(version3, inputs=facepaint3, outputs=faceout3) with gr.Tab("version two"): with gr.Row(): facepaint2 = gr.inputs.Image(type="pil") faceout2 = gr.outputs.Image(type="pil") face_run = gr.Button("Run") face_run.click(version2, inputs=facepaint2, outputs=faceout2) block.launch(enable_queue=True)