File size: 2,276 Bytes
6c5755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51059f1
6c5755e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import torch
import urllib.request
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)

model_type = "DPT_Large"     # MiDaS v3 - Large     (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid"   # MiDaS v3 - Hybrid    (medium accuracy, medium inference speed)
#model_type = "MiDaS_small"  # MiDaS v2.1 - Small   (lowest accuracy, highest inference speed)

midas = torch.hub.load("intel-isl/MiDaS", model_type)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
midas.to(device)
midas.eval()

midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
    transform = midas_transforms.dpt_transform
else:
    transform = midas_transforms.small_transform

def inference(img):
    img = cv2.imread(img.name)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    input_batch = transform(img).to(device)

    with torch.no_grad():
        prediction = midas(input_batch)

        prediction = torch.nn.functional.interpolate(
            prediction.unsqueeze(1),
            size=img.shape[:2],
            mode="bicubic",
            align_corners=False,
        ).squeeze()

    output = prediction.cpu().numpy()
    formatted = (output * 255 / np.max(output)).astype('uint8')
    img = Image.fromarray(formatted)
    return img

inputs =  gr.inputs.Image(type='file', label="Original Image")
outputs = gr.outputs.Image(type="pil",label="Output Image")

title = "DPT-Large"
description = "Gradio demo for DPT-Large:Vision Transformers for Dense Prediction.To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2103.13413' target='_blank'>Vision Transformers for Dense Prediction</a> | <a href='https://github.com/intel-isl/MiDaS' target='_blank'>Github Repo</a></p>"

examples=[['dog.jpg']]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False,examples=examples).launch(debug=True)