import cv2 import torch import urllib.request import gradio as gr import matplotlib.pyplot as plt import numpy as np from PIL import Image url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed) #model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed) #model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed) midas = torch.hub.load("intel-isl/MiDaS", model_type) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") midas.to(device) midas.eval() midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") if model_type == "DPT_Large" or model_type == "DPT_Hybrid": transform = midas_transforms.dpt_transform else: transform = midas_transforms.small_transform def inference(img): img = cv2.imread(img.name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) input_batch = transform(img).to(device) with torch.no_grad(): prediction = midas(input_batch) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img.shape[:2], mode="bicubic", align_corners=False, ).squeeze() output = prediction.cpu().numpy() formatted = (output * 255 / np.max(output)).astype('uint8') img = Image.fromarray(formatted) return img inputs = gr.inputs.Image(type='file', label="Original Image") outputs = gr.outputs.Image(type="pil",label="Output Image") title = "DPT-Large" description = "Gradio demo for DPT-Large:Vision Transformers for Dense Prediction.To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
" examples=[['dog.jpg']] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False,examples=examples).launch(debug=True)