Spaces:
Runtime error
Runtime error
File size: 9,706 Bytes
16aee22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import json
import os
from collections import defaultdict
from tqdm import tqdm
import numpy as np
import torch
from detectron2.data import MetadataCatalog
from detectron2.data.detection_utils import read_image
from detectron2.utils.file_io import PathManager
from pycocotools import mask as maskUtils
from panopticapi.evaluation import PQStat
def default_argument_parser():
"""
Creates a parser with some common arguments used by analysis tools.
Returns:
argparse.ArgumentParser:
"""
parser = argparse.ArgumentParser(description="Evaluate PQ metric for semantic segmentation.")
# NOTE: currently does not support Cityscapes, you need to convert
# Cityscapes prediction format to Detectron2 prediction format.
parser.add_argument(
"--dataset-name",
default="ade20k_sem_seg_val",
choices=["ade20k_sem_seg_val", "coco_2017_test_stuff_10k_sem_seg", "ade20k_full_sem_seg_val"],
help="dataset name you want to evaluate")
parser.add_argument("--json-file", default="", help="path to detection json file")
return parser
# Modified from the official panoptic api: https://github.com/cocodataset/panopticapi/blob/master/panopticapi/evaluation.py
def pq_compute_single_image(segm_gt, segm_dt, categories, ignore_label):
pq_stat = PQStat()
VOID = ignore_label
OFFSET = 256 * 256 * 256
pan_gt = segm_gt
pan_pred = segm_dt
gt_ann = {'segments_info': []}
labels, labels_cnt = np.unique(segm_gt, return_counts=True)
for cat_id, cnt in zip(labels, labels_cnt):
if cat_id == VOID:
continue
gt_ann['segments_info'].append(
{"id": cat_id, "category_id": cat_id, "area": cnt, "iscrowd": 0}
)
pred_ann = {'segments_info': []}
for cat_id in np.unique(segm_dt):
pred_ann['segments_info'].append({"id": cat_id, "category_id": cat_id})
gt_segms = {el['id']: el for el in gt_ann['segments_info']}
pred_segms = {el['id']: el for el in pred_ann['segments_info']}
# predicted segments area calculation + prediction sanity checks
pred_labels_set = set(el['id'] for el in pred_ann['segments_info'])
labels, labels_cnt = np.unique(pan_pred, return_counts=True)
for label, label_cnt in zip(labels, labels_cnt):
if label not in pred_segms:
if label == VOID:
continue
raise KeyError('In the image with ID {} segment with ID {} is presented in PNG and not presented in JSON.'.format(image_id, label))
pred_segms[label]['area'] = label_cnt
pred_labels_set.remove(label)
if pred_segms[label]['category_id'] not in categories:
raise KeyError('In the image with ID {} segment with ID {} has unknown category_id {}.'.format(image_id, label, pred_segms[label]['category_id']))
if len(pred_labels_set) != 0:
raise KeyError('In the image with ID {} the following segment IDs {} are presented in JSON and not presented in PNG.'.format(image_id, list(pred_labels_set)))
# confusion matrix calculation
pan_gt_pred = pan_gt.astype(np.uint64) * OFFSET + pan_pred.astype(np.uint64)
gt_pred_map = {}
labels, labels_cnt = np.unique(pan_gt_pred, return_counts=True)
for label, intersection in zip(labels, labels_cnt):
gt_id = label // OFFSET
pred_id = label % OFFSET
gt_pred_map[(gt_id, pred_id)] = intersection
# count all matched pairs
gt_matched = set()
pred_matched = set()
for label_tuple, intersection in gt_pred_map.items():
gt_label, pred_label = label_tuple
if gt_label not in gt_segms:
continue
if pred_label not in pred_segms:
continue
if gt_segms[gt_label]['iscrowd'] == 1:
continue
if gt_segms[gt_label]['category_id'] != pred_segms[pred_label]['category_id']:
continue
union = pred_segms[pred_label]['area'] + gt_segms[gt_label]['area'] - intersection - gt_pred_map.get((VOID, pred_label), 0)
iou = intersection / union
if iou > 0.5:
pq_stat[gt_segms[gt_label]['category_id']].tp += 1
pq_stat[gt_segms[gt_label]['category_id']].iou += iou
gt_matched.add(gt_label)
pred_matched.add(pred_label)
# count false positives
crowd_labels_dict = {}
for gt_label, gt_info in gt_segms.items():
if gt_label in gt_matched:
continue
# crowd segments are ignored
if gt_info['iscrowd'] == 1:
crowd_labels_dict[gt_info['category_id']] = gt_label
continue
pq_stat[gt_info['category_id']].fn += 1
# count false positives
for pred_label, pred_info in pred_segms.items():
if pred_label in pred_matched:
continue
# intersection of the segment with VOID
intersection = gt_pred_map.get((VOID, pred_label), 0)
# plus intersection with corresponding CROWD region if it exists
if pred_info['category_id'] in crowd_labels_dict:
intersection += gt_pred_map.get((crowd_labels_dict[pred_info['category_id']], pred_label), 0)
# predicted segment is ignored if more than half of the segment correspond to VOID and CROWD regions
if intersection / pred_info['area'] > 0.5:
continue
pq_stat[pred_info['category_id']].fp += 1
return pq_stat
def main():
parser = default_argument_parser()
args = parser.parse_args()
_root = os.getenv("DETECTRON2_DATASETS", "datasets")
json_file = args.json_file
with open(json_file) as f:
predictions = json.load(f)
imgToAnns = defaultdict(list)
for pred in predictions:
image_id = os.path.basename(pred["file_name"]).split(".")[0]
imgToAnns[image_id].append(
{"category_id" : pred["category_id"], "segmentation" : pred["segmentation"]}
)
image_ids = list(imgToAnns.keys())
meta = MetadataCatalog.get(args.dataset_name)
class_names = meta.stuff_classes
num_classes = len(meta.stuff_classes)
ignore_label = meta.ignore_label
conf_matrix = np.zeros((num_classes + 1, num_classes + 1), dtype=np.int64)
categories = {}
for i in range(num_classes):
categories[i] = {"id": i, "name": class_names[i], "isthing": 0}
pq_stat = PQStat()
for image_id in tqdm(image_ids):
if args.dataset_name == "ade20k_sem_seg_val":
gt_dir = os.path.join(_root, "ADEChallengeData2016", "annotations_detectron2", "validation")
segm_gt = read_image(os.path.join(gt_dir, image_id + ".png")).copy().astype(np.int64)
elif args.dataset_name == "coco_2017_test_stuff_10k_sem_seg":
gt_dir = os.path.join(_root, "coco", "coco_stuff_10k", "annotations_detectron2", "test")
segm_gt = read_image(os.path.join(gt_dir, image_id + ".png")).copy().astype(np.int64)
elif args.dataset_name == "ade20k_full_sem_seg_val":
gt_dir = os.path.join(_root, "ADE20K_2021_17_01", "annotations_detectron2", "validation")
segm_gt = read_image(os.path.join(gt_dir, image_id + ".tif")).copy().astype(np.int64)
else:
raise ValueError(f"Unsupported dataset {args.dataset_name}")
# get predictions
segm_dt = np.zeros_like(segm_gt)
anns = imgToAnns[image_id]
for ann in anns:
# map back category_id
if hasattr(meta, "stuff_dataset_id_to_contiguous_id"):
if ann["category_id"] in meta.stuff_dataset_id_to_contiguous_id:
category_id = meta.stuff_dataset_id_to_contiguous_id[ann["category_id"]]
else:
category_id = ann["category_id"]
mask = maskUtils.decode(ann["segmentation"])
segm_dt[mask > 0] = category_id
# miou
gt = segm_gt.copy()
pred = segm_dt.copy()
gt[gt == ignore_label] = num_classes
conf_matrix += np.bincount(
(num_classes + 1) * pred.reshape(-1) + gt.reshape(-1),
minlength=conf_matrix.size,
).reshape(conf_matrix.shape)
# pq
pq_stat_single = pq_compute_single_image(segm_gt, segm_dt, categories, meta.ignore_label)
pq_stat += pq_stat_single
metrics = [("All", None), ("Stuff", False)]
results = {}
for name, isthing in metrics:
results[name], per_class_results = pq_stat.pq_average(categories, isthing=isthing)
if name == 'All':
results['per_class'] = per_class_results
print("{:10s}| {:>5s} {:>5s} {:>5s} {:>5s}".format("", "PQ", "SQ", "RQ", "N"))
print("-" * (10 + 7 * 4))
for name, _isthing in metrics:
print("{:10s}| {:5.1f} {:5.1f} {:5.1f} {:5d}".format(
name,
100 * results[name]['pq'],
100 * results[name]['sq'],
100 * results[name]['rq'],
results[name]['n'])
)
# calculate miou
acc = np.full(num_classes, np.nan, dtype=np.float64)
iou = np.full(num_classes, np.nan, dtype=np.float64)
tp = conf_matrix.diagonal()[:-1].astype(np.float64)
pos_gt = np.sum(conf_matrix[:-1, :-1], axis=0).astype(np.float64)
pos_pred = np.sum(conf_matrix[:-1, :-1], axis=1).astype(np.float64)
acc_valid = pos_gt > 0
acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
iou_valid = (pos_gt + pos_pred) > 0
union = pos_gt + pos_pred - tp
iou[acc_valid] = tp[acc_valid] / union[acc_valid]
miou = np.sum(iou[acc_valid]) / np.sum(iou_valid)
print("")
print(f"mIoU: {miou}")
if __name__ == '__main__':
main()
|