Spaces:
Runtime error
Runtime error
File size: 29,443 Bytes
f93590d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import os
current = os.getcwd()
print(current)
full = current + "/inference"
print(full)
os.chdir(full)
print(os.getcwd())
import network
import morphology
import math
import gradio as gr
from torchvision import transforms
import torchtext
idx = 0
torchtext.utils.download_from_url("https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq", root=".")
def save_img(img, output_path):
result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
result.save(output_path)
def param2stroke(param, H, W, meta_brushes):
"""
Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
Args:
param: a tensor with shape n_strokes x n_param_per_stroke. Here, param_per_stroke is 8:
x_center, y_center, width, height, theta, R, G, and B.
H: output height.
W: output width.
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
Returns:
foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
alphas: a tensor with shape n_strokes x 3 x H x W,
containing binary information of whether a pixel is belonging to the stroke (alpha mat), for painting process.
"""
# Firstly, resize the meta brushes to the required shape,
# in order to decrease GPU memory especially when the required shape is small.
meta_brushes_resize = F.interpolate(meta_brushes, (H, W))
b = param.shape[0]
# Extract shape parameters and color parameters.
param_list = torch.split(param, 1, dim=1)
x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]]
R, G, B = param_list[5:]
# Pre-compute sin theta and cos theta
sin_theta = torch.sin(torch.acos(torch.tensor(-1., device=param.device)) * theta)
cos_theta = torch.cos(torch.acos(torch.tensor(-1., device=param.device)) * theta)
# index means each stroke should use which meta stroke? Vertical meta stroke or horizontal meta stroke.
# When h > w, vertical stroke should be used. When h <= w, horizontal stroke should be used.
index = torch.full((b,), -1, device=param.device, dtype=torch.long)
index[h > w] = 0
index[h <= w] = 1
brush = meta_brushes_resize[index.long()]
# Calculate warp matrix according to the rules defined by pytorch, in order for warping.
warp_00 = cos_theta / w
warp_01 = sin_theta * H / (W * w)
warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w)
warp_10 = -sin_theta * W / (H * h)
warp_11 = cos_theta / h
warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h)
warp_0 = torch.stack([warp_00, warp_01, warp_02], dim=1)
warp_1 = torch.stack([warp_10, warp_11, warp_12], dim=1)
warp = torch.stack([warp_0, warp_1], dim=1)
# Conduct warping.
grid = F.affine_grid(warp, [b, 3, H, W], align_corners=False)
brush = F.grid_sample(brush, grid, align_corners=False)
# alphas is the binary information suggesting whether a pixel is belonging to the stroke.
alphas = (brush > 0).float()
brush = brush.repeat(1, 3, 1, 1)
alphas = alphas.repeat(1, 3, 1, 1)
# Give color to foreground strokes.
color_map = torch.cat([R, G, B], dim=1)
color_map = color_map.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, H, W)
foreground = brush * color_map
# Dilation and erosion are used for foregrounds and alphas respectively to prevent artifacts on stroke borders.
foreground = morphology.dilation(foreground)
alphas = morphology.erosion(alphas)
return foreground, alphas
def param2img_serial(
param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None):
"""
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
and whether there is a border (if intermediate painting results are required).
Output the painting results of adding the corresponding strokes on the current canvas.
Args:
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch x n_param_per_stroke
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
cur_canvas: a tensor with shape batch size x 3 x H x W,
where H and W denote height and width of padded results of original images.
frame_dir: directory to save intermediate painting results. None means intermediate results are not required.
has_border: on the last painting layer, in order to make sure that the painting results do not miss
any important detail, we choose to paint again on this layer but shift patch_size // 2 pixels when
cutting patches. In this case, if intermediate results are required, we need to cut the shifted length
on the border before saving, or there would be a black border.
original_h: to indicate the original height for cropping when saving intermediate results.
original_w: to indicate the original width for cropping when saving intermediate results.
Returns:
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
"""
# param: b, h, w, stroke_per_patch, param_per_stroke
# decision: b, h, w, stroke_per_patch
b, h, w, s, p = param.shape
H, W = cur_canvas.shape[-2:]
is_odd_y = h % 2 == 1
is_odd_x = w % 2 == 1
patch_size_y = 2 * H // h
patch_size_x = 2 * W // w
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
stride=(patch_size_y // 2, patch_size_x // 2))
# canvas_patch: b, 3 * py * px, h * w
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
# canvas_patch: b, h, w, 3, py, px
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
selected_h, selected_w = selected_canvas_patch.shape[1:3]
selected_param = param[:, patch_coord_y, patch_coord_x, stroke_id, :].view(-1, p).contiguous()
selected_decision = decision[:, patch_coord_y, patch_coord_x, stroke_id].view(-1).contiguous()
selected_foregrounds = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x,
device=this_canvas.device)
selected_alphas = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device)
if selected_param[selected_decision, :].shape[0] > 0:
selected_foregrounds[selected_decision, :, :, :], selected_alphas[selected_decision, :, :, :] = \
param2stroke(selected_param[selected_decision, :], patch_size_y, patch_size_x, meta_brushes)
selected_foregrounds = selected_foregrounds.view(
b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
selected_alphas = selected_alphas.view(b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
selected_decision = selected_decision.view(b, selected_h, selected_w, 1, 1, 1).contiguous()
selected_canvas_patch = selected_foregrounds * selected_alphas * selected_decision + selected_canvas_patch * (
1 - selected_alphas * selected_decision)
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
# this_canvas: b, 3, selected_h, py, selected_w, px
this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
# this_canvas: b, 3, selected_h * py, selected_w * px
return this_canvas
global idx
if has_border:
factor = 2
else:
factor = 4
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
return cur_canvas
def param2img_parallel(param, decision, meta_brushes, cur_canvas):
"""
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
and whether there is a border (if intermediate painting results are required).
Output the painting results of adding the corresponding strokes on the current canvas.
Args:
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch x n_param_per_stroke
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
cur_canvas: a tensor with shape batch size x 3 x H x W,
where H and W denote height and width of padded results of original images.
Returns:
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
"""
# param: b, h, w, stroke_per_patch, param_per_stroke
# decision: b, h, w, stroke_per_patch
b, h, w, s, p = param.shape
param = param.view(-1, 8).contiguous()
decision = decision.view(-1).contiguous().bool()
H, W = cur_canvas.shape[-2:]
is_odd_y = h % 2 == 1
is_odd_x = w % 2 == 1
patch_size_y = 2 * H // h
patch_size_x = 2 * W // w
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
foregrounds = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
alphas = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
valid_foregrounds, valid_alphas = param2stroke(param[decision, :], patch_size_y, patch_size_x, meta_brushes)
foregrounds[decision, :, :, :] = valid_foregrounds
alphas[decision, :, :, :] = valid_alphas
# foreground, alpha: b * h * w * stroke_per_patch, 3, patch_size_y, patch_size_x
foregrounds = foregrounds.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
# foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()
# decision: b, h, w, stroke_per_patch, 1, 1, 1
def partial_render(this_canvas, patch_coord_y, patch_coord_x):
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
stride=(patch_size_y // 2, patch_size_x // 2))
# canvas_patch: b, 3 * py * px, h * w
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
# canvas_patch: b, h, w, 3, py, px
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
selected_foregrounds = foregrounds[:, patch_coord_y, patch_coord_x, :, :, :, :]
selected_alphas = alphas[:, patch_coord_y, patch_coord_x, :, :, :, :]
selected_decisions = decision[:, patch_coord_y, patch_coord_x, :, :, :, :]
for i in range(s):
cur_foreground = selected_foregrounds[:, :, :, i, :, :, :]
cur_alpha = selected_alphas[:, :, :, i, :, :, :]
cur_decision = selected_decisions[:, :, :, i, :, :, :]
selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * (
1 - cur_alpha * cur_decision)
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
# this_canvas: b, 3, h_half, py, w_half, px
h_half = this_canvas.shape[2]
w_half = this_canvas.shape[4]
this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
# this_canvas: b, 3, h_half * py, w_half * px
return this_canvas
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
return cur_canvas
def read_img(img_path, img_type='RGB', h=None, w=None):
img = Image.open(img_path).convert(img_type)
if h is not None and w is not None:
img = img.resize((w, h), resample=Image.NEAREST)
img = np.array(img)
if img.ndim == 2:
img = np.expand_dims(img, axis=-1)
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float() / 255.
return img
def pad(img, H, W):
b, c, h, w = img.shape
pad_h = (H - h) // 2
pad_w = (W - w) // 2
remainder_h = (H - h) % 2
remainder_w = (W - w) % 2
img = torch.cat([torch.zeros((b, c, pad_h, w), device=img.device), img,
torch.zeros((b, c, pad_h + remainder_h, w), device=img.device)], dim=-2)
img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
return img
def crop(img, h, w):
H, W = img.shape[-2:]
pad_h = (H - h) // 2
pad_w = (W - w) // 2
remainder_h = (H - h) % 2
remainder_w = (W - w) % 2
img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
return img
def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
# if not os.path.exists(output_dir):
# os.mkdir(output_dir)
input_name = os.path.basename(input_path)
# output_path = os.path.join(output_dir, input_name)
frame_dir = None
if need_animation:
if not serial:
print('It must be under serial mode if animation results are required, so serial flag is set to True!')
serial = True
frame_dir = os.path.join(output_dir, input_name[:input_name.find('.')])
if not os.path.exists(frame_dir):
os.mkdir(frame_dir)
patch_size = 32
stroke_num = 8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net_g = network.Painter(5, stroke_num, 256, 8, 3, 3).to(device)
net_g.load_state_dict(torch.load(model_path))
net_g.eval()
for param in net_g.parameters():
param.requires_grad = False
brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
meta_brushes = torch.cat(
[brush_large_vertical, brush_large_horizontal], dim=0)
with torch.no_grad():
original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
original_h, original_w = original_img.shape[-2:]
K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0)
original_img_pad_size = patch_size * (2 ** K)
original_img_pad = pad(original_img, original_img_pad_size, original_img_pad_size)
final_result = torch.zeros_like(original_img_pad).to(device)
for layer in range(0, K + 1):
layer_size = patch_size * (2 ** layer)
img = F.interpolate(original_img_pad, (layer_size, layer_size))
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
result_patch = F.unfold(result, (patch_size, patch_size),
stride=(patch_size, patch_size))
# There are patch_num * patch_num patches in total
patch_num = (layer_size - patch_size) // patch_size + 1
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
result_patch = result_patch.permute(0, 2, 1).contiguous().view(
-1, 3, patch_size, patch_size).contiguous()
shape_param, stroke_decision = net_g(img_patch, result_patch)
stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
img_patch.shape[0], stroke_num, 3).contiguous()
stroke_param = torch.cat([shape_param, color], dim=-1)
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
# stroke_decision: b * h * w, stroke_per_patch, 1
param = stroke_param.view(1, patch_num, patch_num, stroke_num, 8).contiguous()
decision = stroke_decision.view(1, patch_num, patch_num, stroke_num).contiguous().bool()
# param: b, h, w, stroke_per_patch, 8
# decision: b, h, w, stroke_per_patch
param[..., :2] = param[..., :2] / 2 + 0.25
param[..., 2:4] = param[..., 2:4] / 2
if serial:
final_result = param2img_serial(param, decision, meta_brushes, final_result,
frame_dir, False, original_h, original_w)
else:
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
border_size = original_img_pad_size // (2 * patch_num)
img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
0, 0, 0, 0])
result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
0, 0, 0, 0])
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size))
final_result = F.pad(final_result, [border_size, border_size, border_size, border_size, 0, 0, 0, 0])
h = (img.shape[2] - patch_size) // patch_size + 1
w = (img.shape[3] - patch_size) // patch_size + 1
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
shape_param, stroke_decision = net_g(img_patch, result_patch)
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
img_patch.shape[0], stroke_num, 3).contiguous()
stroke_param = torch.cat([shape_param, color], dim=-1)
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
# stroke_decision: b * h * w, stroke_per_patch, 1
param = stroke_param.view(1, h, w, stroke_num, 8).contiguous()
decision = stroke_decision.view(1, h, w, stroke_num).contiguous().bool()
# param: b, h, w, stroke_per_patch, 8
# decision: b, h, w, stroke_per_patch
param[..., :2] = param[..., :2] / 2 + 0.25
param[..., 2:4] = param[..., 2:4] / 2
if serial:
final_result = param2img_serial(param, decision, meta_brushes, final_result,
frame_dir, True, original_h, original_w)
else:
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
final_result = crop(final_result, original_h, original_w)
# save_img(final_result[0], output_path)
tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0))
return tensor_to_pil
def gradio_inference(image):
return main(input_path=image.name,
model_path='model.pth',
output_dir='output/',
need_animation=False, # whether need intermediate results for animation.
resize_h=512, # resize original input to this size. None means do not resize.
resize_w=512, # resize original input to this size. None means do not resize.
serial=False) # if need animation, serial must be True.
title = "Anime2Sketch"
description = "demo for Anime2Sketch. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.05703'>Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis</a> | <a href='https://github.com/Mukosame/Anime2Sketch'>Github Repo</a></p>"
gr.Interface(
gradio_inference,
[gr.inputs.Image(type="file", label="Input")],
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article
).launch(debug=True)
|