import os os.system("hub install stylepro_artistic==1.0.1") import gradio as gr import paddlehub as hub import numpy as np from PIL import Image import cv2 stylepro_artistic = hub.Module(name="stylepro_artistic") def inference(content,style): result = stylepro_artistic.style_transfer( images=[{ 'content': cv2.imread(content.name), 'styles': [cv2.imread(style.name)] }]) return Image.fromarray(np.uint8(result[0]['data'])[:,:,::-1]).convert('RGB') title = " StyleProNet" description = "Gradio demo for Parameter-Free Style Projection for Arbitrary Style Transfer. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
Parameter-Free Style Projection for Arbitrary Style Transfer | Github Repo
" examples=[['mona1.jpeg','starry.jpeg']] iface = gr.Interface(inference, inputs=[gr.inputs.Image(type="file",label='content'),gr.inputs.Image(type="file",label='style')], outputs=gr.outputs.Image(type="pil"),enable_queue=True,title=title,article=article,description=description,examples=examples) iface.launch()