Spaces:
Sleeping
Sleeping
updates
Browse files
app.py
CHANGED
@@ -1,396 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
text-decoration: none;
|
185 |
-
}
|
186 |
-
|
187 |
-
a:visited {
|
188 |
-
color: #551A8B;
|
189 |
-
}
|
190 |
-
|
191 |
-
.container {
|
192 |
-
width: 85%;
|
193 |
-
margin: auto;
|
194 |
-
}
|
195 |
-
|
196 |
-
table {
|
197 |
-
width: 100%;
|
198 |
-
}
|
199 |
-
|
200 |
-
.header-table {
|
201 |
-
width: 100%;
|
202 |
-
background-color: #ff6600;
|
203 |
-
padding: 2px 10px;
|
204 |
-
}
|
205 |
-
|
206 |
-
.header-table a {
|
207 |
-
color: black;
|
208 |
-
font-weight: bold;
|
209 |
-
font-size: 14pt;
|
210 |
-
text-decoration: none;
|
211 |
-
}
|
212 |
-
|
213 |
-
.itemlist .athing {
|
214 |
-
background-color: #f6f6ef;
|
215 |
-
}
|
216 |
-
|
217 |
-
.rank {
|
218 |
-
font-size: 14pt;
|
219 |
-
color: #828282;
|
220 |
-
padding-right: 5px;
|
221 |
-
}
|
222 |
-
|
223 |
-
.storylink {
|
224 |
-
font-size: 10pt;
|
225 |
-
}
|
226 |
-
|
227 |
-
.subtext {
|
228 |
-
font-size: 8pt;
|
229 |
-
color: #828282;
|
230 |
-
padding-left: 40px;
|
231 |
-
}
|
232 |
-
|
233 |
-
.subtext a {
|
234 |
-
color: #828282;
|
235 |
-
text-decoration: none;
|
236 |
-
}
|
237 |
-
|
238 |
-
#refresh-button {
|
239 |
-
background: none;
|
240 |
-
border: none;
|
241 |
-
color: black;
|
242 |
-
font-weight: bold;
|
243 |
-
font-size: 14pt;
|
244 |
-
cursor: pointer;
|
245 |
-
}
|
246 |
-
|
247 |
-
.no-papers {
|
248 |
-
text-align: center;
|
249 |
-
color: #828282;
|
250 |
-
padding: 1rem;
|
251 |
-
font-size: 14pt;
|
252 |
-
}
|
253 |
-
|
254 |
-
@media (max-width: 640px) {
|
255 |
-
.header-table a {
|
256 |
-
font-size: 12pt;
|
257 |
-
}
|
258 |
-
|
259 |
-
.storylink {
|
260 |
-
font-size: 9pt;
|
261 |
-
}
|
262 |
-
|
263 |
-
.subtext {
|
264 |
-
font-size: 7pt;
|
265 |
-
}
|
266 |
-
}
|
267 |
-
|
268 |
-
/* Dark mode */
|
269 |
-
@media (prefers-color-scheme: dark) {
|
270 |
-
body {
|
271 |
-
background-color: #121212;
|
272 |
-
color: #e0e0e0;
|
273 |
-
}
|
274 |
-
|
275 |
-
a {
|
276 |
-
color: #add8e6;
|
277 |
-
}
|
278 |
-
|
279 |
-
a:visited {
|
280 |
-
color: #9370db;
|
281 |
-
}
|
282 |
-
|
283 |
-
.header-table {
|
284 |
-
background-color: #ff6600;
|
285 |
-
}
|
286 |
-
|
287 |
-
.header-table a {
|
288 |
-
color: black;
|
289 |
-
}
|
290 |
-
|
291 |
-
.itemlist .athing {
|
292 |
-
background-color: #1e1e1e;
|
293 |
-
}
|
294 |
-
|
295 |
-
.rank {
|
296 |
-
color: #b0b0b0;
|
297 |
-
}
|
298 |
-
|
299 |
-
.subtext {
|
300 |
-
color: #b0b0b0;
|
301 |
-
}
|
302 |
-
|
303 |
-
.subtext a {
|
304 |
-
color: #b0b0b0;
|
305 |
-
}
|
306 |
-
|
307 |
-
#refresh-button {
|
308 |
-
color: #e0e0e0;
|
309 |
-
}
|
310 |
-
|
311 |
-
.no-papers {
|
312 |
-
color: #b0b0b0;
|
313 |
-
}
|
314 |
-
}
|
315 |
"""
|
316 |
|
317 |
-
demo = gr.Blocks(css=css)
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
|
326 |
-
**Step 1:** Search for your paper and index on Hugging Face:
|
327 |
-
[https://huggingface.co/papers?search=true](https://huggingface.co/papers?search=true)
|
328 |
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
336 |
with gr.Row():
|
337 |
-
gr.
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
# Time Filter Dropdown
|
353 |
-
with gr.Row(elem_classes=["time-filter-row"], elem_id="time-filter-row"):
|
354 |
-
gr.HTML("<label for='time-filter'>Filter by Timeframe: </label>")
|
355 |
-
time_filter_dropdown = gr.Dropdown(
|
356 |
-
choices=["All Time", "Last Week", "Last Month", "Last Year"],
|
357 |
-
value="All Time",
|
358 |
-
label="Timeframe",
|
359 |
-
interactive=True,
|
360 |
-
elem_id="time-filter-dropdown"
|
361 |
-
)
|
362 |
-
|
363 |
-
# Paper list
|
364 |
-
paper_list = gr.HTML()
|
365 |
-
|
366 |
-
# Navigation Buttons
|
367 |
with gr.Row():
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
time_filter_dropdown.change(
|
382 |
-
paper_manager.set_time_filter,
|
383 |
-
inputs=[time_filter_dropdown],
|
384 |
-
outputs=[paper_list]
|
385 |
)
|
386 |
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
-
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
import operator
|
5 |
+
import pandas as pd
|
6 |
+
import tqdm.auto
|
7 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
from ragatouille import RAGPretrainedModel
|
10 |
+
|
11 |
import gradio as gr
|
12 |
+
from gradio_calendar import Calendar
|
13 |
+
import datasets
|
14 |
+
|
15 |
+
# --- Data Loading and Processing ---
|
16 |
+
|
17 |
+
api = HfApi()
|
18 |
+
|
19 |
+
INDEX_REPO_ID = "hysts-bot-data/daily-papers-abstract-index"
|
20 |
+
INDEX_DIR_PATH = ".ragatouille/colbert/indexes/daily-papers-abstract-index/"
|
21 |
+
api.snapshot_download(
|
22 |
+
repo_id=INDEX_REPO_ID,
|
23 |
+
repo_type="dataset",
|
24 |
+
local_dir=INDEX_DIR_PATH,
|
25 |
+
)
|
26 |
+
abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH)
|
27 |
+
# Run once to initialize the retriever
|
28 |
+
abstract_retriever.search("LLM")
|
29 |
+
|
30 |
+
|
31 |
+
def update_abstract_index() -> None:
|
32 |
+
global abstract_retriever
|
33 |
+
|
34 |
+
api.snapshot_download(
|
35 |
+
repo_id=INDEX_REPO_ID,
|
36 |
+
repo_type="dataset",
|
37 |
+
local_dir=INDEX_DIR_PATH,
|
38 |
+
)
|
39 |
+
abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH)
|
40 |
+
abstract_retriever.search("LLM")
|
41 |
+
|
42 |
+
|
43 |
+
scheduler_abstract = BackgroundScheduler()
|
44 |
+
scheduler_abstract.add_job(
|
45 |
+
func=update_abstract_index,
|
46 |
+
trigger="cron",
|
47 |
+
minute=0, # Every hour at minute 0
|
48 |
+
timezone="UTC",
|
49 |
+
misfire_grace_time=3 * 60,
|
50 |
+
)
|
51 |
+
scheduler_abstract.start()
|
52 |
+
|
53 |
+
|
54 |
+
def get_df() -> pd.DataFrame:
|
55 |
+
df = pd.merge(
|
56 |
+
left=datasets.load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(),
|
57 |
+
right=datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(),
|
58 |
+
on="arxiv_id",
|
59 |
+
)
|
60 |
+
df = df[::-1].reset_index(drop=True)
|
61 |
+
df["date"] = df["date"].dt.strftime("%Y-%m-%d")
|
62 |
+
|
63 |
+
paper_info = []
|
64 |
+
for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)):
|
65 |
+
info = row.copy()
|
66 |
+
del info["abstract"]
|
67 |
+
info["paper_page"] = f"https://huggingface.co/papers/{row.arxiv_id}"
|
68 |
+
paper_info.append(info)
|
69 |
+
return pd.DataFrame(paper_info)
|
70 |
+
|
71 |
+
|
72 |
+
class Prettifier:
|
73 |
+
@staticmethod
|
74 |
+
def get_github_link(link: str) -> str:
|
75 |
+
if not link:
|
76 |
+
return ""
|
77 |
+
return Prettifier.create_link("github", link)
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def create_link(text: str, url: str) -> str:
|
81 |
+
return f'<a href="{url}" target="_blank">{text}</a>'
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def to_div(text: str | None, category_name: str) -> str:
|
85 |
+
if text is None:
|
86 |
+
text = ""
|
87 |
+
class_name = f"{category_name}-{text.lower()}"
|
88 |
+
return f'<div class="{class_name}">{text}</div>'
|
89 |
+
|
90 |
+
def __call__(self, df: pd.DataFrame) -> pd.DataFrame:
|
91 |
+
new_rows = []
|
92 |
+
for _, row in df.iterrows():
|
93 |
+
new_row = {
|
94 |
+
"date": Prettifier.create_link(row.date, f"https://huggingface.co/papers?date={row.date}"),
|
95 |
+
"paper_page": Prettifier.create_link(row.arxiv_id, row.paper_page),
|
96 |
+
"title": row["title"],
|
97 |
+
"github": self.get_github_link(row.github),
|
98 |
+
"👍": row["upvotes"],
|
99 |
+
"💬": row["num_comments"],
|
100 |
+
}
|
101 |
+
new_rows.append(new_row)
|
102 |
+
return pd.DataFrame(new_rows)
|
103 |
+
|
104 |
+
|
105 |
+
class PaperList:
|
106 |
+
COLUMN_INFO = [
|
107 |
+
["date", "markdown"],
|
108 |
+
["paper_page", "markdown"],
|
109 |
+
["title", "str"],
|
110 |
+
["github", "markdown"],
|
111 |
+
["👍", "number"],
|
112 |
+
["💬", "number"],
|
113 |
+
]
|
114 |
+
|
115 |
+
def __init__(self, df: pd.DataFrame):
|
116 |
+
self.df_raw = df
|
117 |
+
self._prettifier = Prettifier()
|
118 |
+
self.df_prettified = self._prettifier(df).loc[:, self.column_names]
|
119 |
+
|
120 |
+
@property
|
121 |
+
def column_names(self):
|
122 |
+
return list(map(operator.itemgetter(0), self.COLUMN_INFO))
|
123 |
+
|
124 |
+
@property
|
125 |
+
def column_datatype(self):
|
126 |
+
return list(map(operator.itemgetter(1), self.COLUMN_INFO))
|
127 |
+
|
128 |
+
def search(
|
129 |
+
self,
|
130 |
+
start_date: datetime.datetime,
|
131 |
+
end_date: datetime.datetime,
|
132 |
+
title_search_query: str,
|
133 |
+
abstract_search_query: str,
|
134 |
+
max_num_to_retrieve: int,
|
135 |
+
) -> pd.DataFrame:
|
136 |
+
df = self.df_raw.copy()
|
137 |
+
df["date"] = pd.to_datetime(df["date"])
|
138 |
+
|
139 |
+
# Filter by date
|
140 |
+
df = df[(df["date"] >= start_date) & (df["date"] <= end_date)]
|
141 |
+
df["date"] = df["date"].dt.strftime("%Y-%m-%d")
|
142 |
+
|
143 |
+
# Filter by title
|
144 |
+
if title_search_query:
|
145 |
+
df = df[df["title"].str.contains(title_search_query, case=False)]
|
146 |
+
|
147 |
+
# Filter by abstract
|
148 |
+
if abstract_search_query:
|
149 |
+
results = abstract_retriever.search(abstract_search_query, k=max_num_to_retrieve)
|
150 |
+
remaining_ids = set(df["arxiv_id"])
|
151 |
+
found_id_set = set()
|
152 |
+
found_ids = []
|
153 |
+
for x in results:
|
154 |
+
arxiv_id = x["document_id"]
|
155 |
+
if arxiv_id not in remaining_ids:
|
156 |
+
continue
|
157 |
+
if arxiv_id in found_id_set:
|
158 |
+
continue
|
159 |
+
found_id_set.add(arxiv_id)
|
160 |
+
found_ids.append(arxiv_id)
|
161 |
+
df = df[df["arxiv_id"].isin(found_ids)].set_index("arxiv_id").reindex(index=found_ids).reset_index()
|
162 |
+
|
163 |
+
df_prettified = self._prettifier(df).loc[:, self.column_names]
|
164 |
+
return df_prettified
|
165 |
+
|
166 |
+
|
167 |
+
paper_list = PaperList(get_df())
|
168 |
+
|
169 |
+
|
170 |
+
def update_paper_list() -> None:
|
171 |
+
global paper_list
|
172 |
+
paper_list = PaperList(get_df())
|
173 |
+
|
174 |
+
|
175 |
+
scheduler_data = BackgroundScheduler()
|
176 |
+
scheduler_data.add_job(
|
177 |
+
func=update_paper_list,
|
178 |
+
trigger="cron",
|
179 |
+
minute=0, # Every hour at minute 0
|
180 |
+
timezone="UTC",
|
181 |
+
misfire_grace_time=60,
|
182 |
+
)
|
183 |
+
scheduler_data.start()
|
184 |
+
|
185 |
+
# --- Gradio App ---
|
186 |
+
|
187 |
+
DESCRIPTION = "# [Daily Papers](https://huggingface.co/papers)"
|
188 |
+
|
189 |
+
FOOT_NOTE = """\
|
190 |
+
Related useful Spaces:
|
191 |
+
- [Semantic Scholar Paper Recommender](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) by [davanstrien](https://huggingface.co/davanstrien)
|
192 |
+
- [ArXiv CS RAG](https://huggingface.co/spaces/bishmoy/Arxiv-CS-RAG) by [bishmoy](https://huggingface.co/bishmoy)
|
193 |
+
- [Paper Q&A](https://huggingface.co/spaces/chansung/paper_qa) by [chansung](https://huggingface.co/chansung)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
"""
|
195 |
|
|
|
196 |
|
197 |
+
def update_df() -> pd.DataFrame:
|
198 |
+
return paper_list.df_prettified
|
199 |
+
|
200 |
+
|
201 |
+
def update_num_papers(df: pd.DataFrame) -> str:
|
202 |
+
return f"{len(df)} / {len(paper_list.df_raw)}"
|
203 |
|
|
|
|
|
204 |
|
205 |
+
def search(
|
206 |
+
start_date: datetime.datetime,
|
207 |
+
end_date: datetime.datetime,
|
208 |
+
search_title: str,
|
209 |
+
search_abstract: str,
|
210 |
+
max_num_to_retrieve: int,
|
211 |
+
) -> pd.DataFrame:
|
212 |
+
return paper_list.search(start_date, end_date, search_title, search_abstract, max_num_to_retrieve)
|
213 |
|
214 |
+
|
215 |
+
with gr.Blocks(css="style.css") as demo:
|
216 |
+
gr.Markdown(DESCRIPTION)
|
217 |
+
with gr.Group():
|
218 |
+
search_title = gr.Textbox(label="Search title")
|
219 |
with gr.Row():
|
220 |
+
with gr.Column(scale=4):
|
221 |
+
search_abstract = gr.Textbox(
|
222 |
+
label="Search abstract",
|
223 |
+
info="The result may not be accurate as the abstract does not contain all the information.",
|
224 |
+
)
|
225 |
+
with gr.Column(scale=1):
|
226 |
+
max_num_to_retrieve = gr.Slider(
|
227 |
+
label="Max number to retrieve",
|
228 |
+
info="This is used only for search on abstracts.",
|
229 |
+
minimum=1,
|
230 |
+
maximum=len(paper_list.df_raw),
|
231 |
+
step=1,
|
232 |
+
value=100,
|
233 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
with gr.Row():
|
235 |
+
start_date = Calendar(label="Start date", type="date", value="2023-05-05")
|
236 |
+
end_date = Calendar(label="End date", type="date", value=datetime.datetime.utcnow().strftime("%Y-%m-%d"))
|
237 |
+
|
238 |
+
num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(paper_list.df_raw), interactive=False)
|
239 |
+
df = gr.Dataframe(
|
240 |
+
value=paper_list.df_prettified,
|
241 |
+
datatype=paper_list.column_datatype,
|
242 |
+
type="pandas",
|
243 |
+
interactive=False,
|
244 |
+
height=1000,
|
245 |
+
elem_id="table",
|
246 |
+
column_widths=["10%", "10%", "60%", "10%", "5%", "5%"],
|
247 |
+
wrap=True,
|
|
|
|
|
|
|
|
|
248 |
)
|
249 |
|
250 |
+
gr.Markdown(FOOT_NOTE)
|
251 |
+
|
252 |
+
# Define the triggers and corresponding functions
|
253 |
+
search_event = gr.Button("Search")
|
254 |
+
search_event.click(
|
255 |
+
fn=search,
|
256 |
+
inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve],
|
257 |
+
outputs=df,
|
258 |
+
).then(
|
259 |
+
fn=update_num_papers,
|
260 |
+
inputs=df,
|
261 |
+
outputs=num_papers,
|
262 |
+
queue=False,
|
263 |
+
)
|
264 |
+
|
265 |
+
# Automatically trigger search when inputs change
|
266 |
+
for trigger in [start_date, end_date, search_title, search_abstract, max_num_to_retrieve]:
|
267 |
+
trigger.change(
|
268 |
+
fn=search,
|
269 |
+
inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve],
|
270 |
+
outputs=df,
|
271 |
+
).then(
|
272 |
+
fn=update_num_papers,
|
273 |
+
inputs=df,
|
274 |
+
outputs=num_papers,
|
275 |
+
queue=False,
|
276 |
+
)
|
277 |
+
|
278 |
+
# Load the initial dataframe and number of papers
|
279 |
+
demo.load(
|
280 |
+
fn=update_df,
|
281 |
+
outputs=df,
|
282 |
+
queue=False,
|
283 |
+
).then(
|
284 |
+
fn=update_num_papers,
|
285 |
+
inputs=df,
|
286 |
+
outputs=num_papers,
|
287 |
+
queue=False,
|
288 |
+
)
|
289 |
|
290 |
+
if __name__ == "__main__":
|
291 |
+
demo.queue(api_open=False).launch(show_api=False)
|