File size: 6,162 Bytes
de1b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""Copyright (C) 2024 Apple Inc. All Rights Reserved.

Dense Prediction Transformer Decoder architecture.

Implements a variant of Vision Transformers for Dense Prediction, https://arxiv.org/abs/2103.13413
"""

from __future__ import annotations

from typing import Iterable

import torch
from torch import nn


class MultiresConvDecoder(nn.Module):
    """Decoder for multi-resolution encodings."""

    def __init__(
        self,
        dims_encoder: Iterable[int],
        dim_decoder: int,
    ):
        """Initialize multiresolution convolutional decoder.

        Args:
        ----
            dims_encoder: Expected dims at each level from the encoder.
            dim_decoder: Dim of decoder features.

        """
        super().__init__()
        self.dims_encoder = list(dims_encoder)
        self.dim_decoder = dim_decoder
        self.dim_out = dim_decoder

        num_encoders = len(self.dims_encoder)

        # At the highest resolution, i.e. level 0, we apply projection w/ 1x1 convolution
        # when the dimensions mismatch. Otherwise we do not do anything, which is
        # the default behavior of monodepth.
        conv0 = (
            nn.Conv2d(self.dims_encoder[0], dim_decoder, kernel_size=1, bias=False)
            if self.dims_encoder[0] != dim_decoder
            else nn.Identity()
        )

        convs = [conv0]
        for i in range(1, num_encoders):
            convs.append(
                nn.Conv2d(
                    self.dims_encoder[i],
                    dim_decoder,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=False,
                )
            )

        self.convs = nn.ModuleList(convs)

        fusions = []
        for i in range(num_encoders):
            fusions.append(
                FeatureFusionBlock2d(
                    num_features=dim_decoder,
                    deconv=(i != 0),
                    batch_norm=False,
                )
            )
        self.fusions = nn.ModuleList(fusions)

    def forward(self, encodings: torch.Tensor) -> torch.Tensor:
        """Decode the multi-resolution encodings."""
        num_levels = len(encodings)
        num_encoders = len(self.dims_encoder)

        if num_levels != num_encoders:
            raise ValueError(
                f"Got encoder output levels={num_levels}, expected levels={num_encoders+1}."
            )

        # Project features of different encoder dims to the same decoder dim.
        # Fuse features from the lowest resolution (num_levels-1)
        # to the highest (0).
        features = self.convs[-1](encodings[-1])
        lowres_features = features
        features = self.fusions[-1](features)
        for i in range(num_levels - 2, -1, -1):
            features_i = self.convs[i](encodings[i])
            features = self.fusions[i](features, features_i)
        return features, lowres_features


class ResidualBlock(nn.Module):
    """Generic implementation of residual blocks.

    This implements a generic residual block from
        He et al. - Identity Mappings in Deep Residual Networks (2016),
        https://arxiv.org/abs/1603.05027
    which can be further customized via factory functions.
    """

    def __init__(self, residual: nn.Module, shortcut: nn.Module | None = None) -> None:
        """Initialize ResidualBlock."""
        super().__init__()
        self.residual = residual
        self.shortcut = shortcut

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Apply residual block."""
        delta_x = self.residual(x)

        if self.shortcut is not None:
            x = self.shortcut(x)

        return x + delta_x


class FeatureFusionBlock2d(nn.Module):
    """Feature fusion for DPT."""

    def __init__(
        self,
        num_features: int,
        deconv: bool = False,
        batch_norm: bool = False,
    ):
        """Initialize feature fusion block.

        Args:
        ----
            num_features: Input and output dimensions.
            deconv: Whether to use deconv before the final output conv.
            batch_norm: Whether to use batch normalization in resnet blocks.

        """
        super().__init__()

        self.resnet1 = self._residual_block(num_features, batch_norm)
        self.resnet2 = self._residual_block(num_features, batch_norm)

        self.use_deconv = deconv
        if deconv:
            self.deconv = nn.ConvTranspose2d(
                in_channels=num_features,
                out_channels=num_features,
                kernel_size=2,
                stride=2,
                padding=0,
                bias=False,
            )

        self.out_conv = nn.Conv2d(
            num_features,
            num_features,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=True,
        )

        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x0: torch.Tensor, x1: torch.Tensor | None = None) -> torch.Tensor:
        """Process and fuse input features."""
        x = x0

        if x1 is not None:
            res = self.resnet1(x1)
            x = self.skip_add.add(x, res)

        x = self.resnet2(x)

        if self.use_deconv:
            x = self.deconv(x)
        x = self.out_conv(x)

        return x

    @staticmethod
    def _residual_block(num_features: int, batch_norm: bool):
        """Create a residual block."""

        def _create_block(dim: int, batch_norm: bool) -> list[nn.Module]:
            layers = [
                nn.ReLU(False),
                nn.Conv2d(
                    num_features,
                    num_features,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=not batch_norm,
                ),
            ]
            if batch_norm:
                layers.append(nn.BatchNorm2d(dim))
            return layers

        residual = nn.Sequential(
            *_create_block(dim=num_features, batch_norm=batch_norm),
            *_create_block(dim=num_features, batch_norm=batch_norm),
        )
        return ResidualBlock(residual)