Spaces:
Runtime error
Runtime error
import os | |
os.system("gdown https://drive.google.com/uc?id=1-95IOJ-2y9BtmABiffIwndPqNZD_gLnV") | |
os.system("unzip big-lama.zip") | |
import cv2 | |
import paddlehub as hub | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import numpy as np | |
os.mkdir("data") | |
os.mkdir("dataout") | |
# Images | |
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2018/08/12/16/59/ara-3601194_1280.jpg', 'parrot.jpg') | |
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/10/21/14/46/fox-1758183_1280.jpg', 'fox.jpg') | |
model = hub.Module(name='U2Net') | |
def infer(img): | |
img.save("./data/data.png") | |
result = model.Segmentation( | |
images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)], | |
paths=None, | |
batch_size=1, | |
input_size=320, | |
output_dir='output', | |
visualization=True) | |
im = Image.fromarray(result[0]['mask']) | |
im.save("./data/data_mask.png") | |
os.system('python predict.py model.path=./big-lama indir=./data outdir=./dataout device=cpu') | |
return "./dataout/data_mask.png" | |
inputs = gr.inputs.Image(type='pil', label="Original Image") | |
outputs = gr.outputs.Image(type="file",label="output") | |
title = "U^2-Net" | |
description = "demo for U^2-Net. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.09007'>U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection</a> | <a href='https://github.com/xuebinqin/U-2-Net'>Github Repo</a></p>" | |
examples = [ | |
['fox.jpg'], | |
['parrot.jpg'] | |
] | |
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |