File size: 5,596 Bytes
d58f539
f7de418
d58f539
f7de418
d58f539
669ae67
f7de418
 
d6247a0
f7de418
 
d58f539
f7de418
 
f8bd65e
 
913a139
 
f7de418
ef46ff0
913a139
ef46ff0
c2d4418
 
 
ef46ff0
 
 
 
 
16020a5
f8bd65e
 
 
 
913a139
f8bd65e
 
 
913a139
 
 
 
 
 
 
 
 
 
f8bd65e
913a139
f8bd65e
 
 
d6247a0
 
 
913a139
 
d6247a0
f8bd65e
d6247a0
 
 
 
 
 
 
 
 
 
913a139
 
d6247a0
 
 
f8bd65e
 
d6247a0
 
f8bd65e
 
 
 
 
 
 
 
9f81a69
 
f8bd65e
 
 
d6247a0
9f81a69
 
d6247a0
f8bd65e
d58f539
f8bd65e
913a139
 
f8bd65e
 
 
 
 
 
 
 
 
ef46ff0
9f81a69
e490755
 
9f81a69
e490755
913a139
9f81a69
 
 
913a139
9f81a69
d58f539
ef46ff0
 
 
 
 
 
913a139
 
 
f8bd65e
f7de418
ef46ff0
 
 
 
 
 
913a139
 
 
f7de418
f8bd65e
 
 
 
9f81a69
f7de418
f8bd65e
 
ef46ff0
913a139
f8bd65e
 
 
 
 
913a139
 
d6247a0
f7de418
f8bd65e
 
 
 
 
 
f7de418
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import os
import base64
import openai
import time
from dataclasses import dataclass, field
from threading import Lock

@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    pause_start: float | None = None
    last_speech: float = 0
    conversation: list = field(default_factory=list)
    client: openai.OpenAI = None
    output_format: str = "mp3"

# Global lock for thread safety
state_lock = Lock()

def create_client(api_key):
    return openai.OpenAI(
        base_url="https://llama3-1-8b.lepton.run/api/v1/",
        api_key=api_key
    )

def process_audio(audio: tuple, state: AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
        state.last_speech = time.time()
    else:
        state.stream = np.concatenate((state.stream, audio[1]))

    # Improved pause detection
    current_time = time.time()
    if np.max(np.abs(audio[1])) > 0.1:  # Adjust this threshold as needed
        state.last_speech = current_time
        state.pause_start = None
    elif state.pause_start is None:
        state.pause_start = current_time

    # Check if pause is long enough to stop recording
    if state.pause_start and (current_time - state.pause_start > 2.0):  # 2 seconds of silence
        return gr.Audio(recording=False), state

    return None, state

def generate_response_and_audio(audio_bytes: bytes, state: AppState):
    if state.client is None:
        raise gr.Error("Please enter a valid API key first.")

    format_ = state.output_format
    bitrate = 128 if format_ == "mp3" else 32  # Higher bitrate for MP3, lower for OPUS
    audio_data = base64.b64encode(audio_bytes).decode()
    
    try:
        stream = state.client.chat.completions.create(
            extra_body={
                "require_audio": True,
                "tts_preset_id": "jessica",
                "tts_audio_format": format_,
                "tts_audio_bitrate": bitrate
            },
            model="llama3.1-8b",
            messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
            temperature=0.7,
            max_tokens=256,
            stream=True,
        )

        full_response = ""
        audios = []

        for chunk in stream:
            if not chunk.choices:
                continue
            content = chunk.choices[0].delta.content
            audio = getattr(chunk.choices[0], 'audio', [])
            if content:
                full_response += content
            if audio:
                audios.extend(audio)

        final_audio = b''.join([base64.b64decode(a) for a in audios])

        state.conversation.append({"role": "user", "content": "Audio input"})
        state.conversation.append({"role": "assistant", "content": full_response})

        return full_response, final_audio, state

    except Exception as e:
        raise gr.Error(f"Error during audio streaming: {e}")

def response(state: AppState):
    if state.stream is None or len(state.stream) == 0:
        return None, None, state
    
    audio_buffer = io.BytesIO()
    segment = AudioSegment(
        state.stream.tobytes(),
        frame_rate=state.sampling_rate,
        sample_width=state.stream.dtype.itemsize,
        channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
    )
    segment.export(audio_buffer, format="wav")

    full_response, final_audio, updated_state = generate_response_and_audio(audio_buffer.getvalue(), state)

    # Update the chatbot with the final conversation
    chatbot_output = updated_state.conversation[-2:]  # Get the last two messages (user input and AI response)
    
    # Reset the audio stream for the next interaction
    updated_state.stream = None
    updated_state.pause_start = None
    updated_state.last_speech = 0
    
    return chatbot_output, final_audio, updated_state

def set_api_key(api_key, state):
    if not api_key:
        raise gr.Error("Please enter a valid API key.")
    state.client = create_client(api_key)
    return "API key set successfully!", state

def update_format(format, state):
    state.output_format = format
    return state

with gr.Blocks() as demo:
    with gr.Row():
        api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
        set_key_button = gr.Button("Set API Key")
    
    api_key_status = gr.Textbox(label="API Key Status", interactive=False)
    
    with gr.Row():
        format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")
    
    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
        with gr.Column():
            chatbot = gr.Chatbot(label="Conversation", type="messages")
            output_audio = gr.Audio(label="Output Audio", autoplay=True)
    
    state = gr.State(AppState())

    set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
    format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])

    stream = input_audio.stream(
        process_audio,
        [input_audio, state],
        [input_audio, state],
        stream_every=0.25,  # Reduced to make it more responsive
        time_limit=60,  # Increased to allow for longer messages
    )
    
    respond = input_audio.stop_recording(
        response,
        [state],
        [chatbot, output_audio, state]
    )

demo.launch()