|
import os |
|
import json |
|
from typing import List |
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from torchvision.transforms._transforms_video import NormalizeVideo |
|
|
|
import gradio as gr |
|
|
|
|
|
|
|
device = "cpu" |
|
os.system("wget https://huggingface.co/akhaliq/Omnivore/resolve/main/swinB_checkpoint.torch") |
|
|
|
model_name = "omnivore_swinB" |
|
model = torch.hub.load('facebookresearch/omnivore:main', "omnivore_swinB", pretrained=False) |
|
new_dict = {} |
|
for key, value in torch.load('/home/user/app/swinB_checkpoint.torch')['trunk'].items(): |
|
new_dict['trunk.' + key] = value |
|
|
|
for key, value in torch.load('/home/user/app/swinB_checkpoint.torch')['heads'].items(): |
|
new_dict['heads.' + key] = value |
|
|
|
model.load_state_dict(new_dict) |
|
|
|
|
|
model = model.to(device) |
|
model = model.eval() |
|
|
|
os.system("wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json") |
|
|
|
with open("imagenet_class_index.json", "r") as f: |
|
imagenet_classnames = json.load(f) |
|
|
|
|
|
imagenet_id_to_classname = {} |
|
for k, v in imagenet_classnames.items(): |
|
imagenet_id_to_classname[k] = v[1] |
|
|
|
os.system("wget https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/13-11-02-olb-by-RalfR-03.jpg/800px-13-11-02-olb-by-RalfR-03.jpg -O library.jpg") |
|
|
|
def inference(img): |
|
image = img |
|
image_transform = T.Compose( |
|
[ |
|
T.Resize(224), |
|
T.CenterCrop(224), |
|
T.ToTensor(), |
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image = image_transform(image) |
|
|
|
|
|
image = image[None, :, None, ...] |
|
|
|
prediction = model(image, input_type="image") |
|
prediction = F.softmax(prediction, dim=1) |
|
pred_classes = prediction.topk(k=5).indices |
|
|
|
pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]] |
|
return "Top 5 predicted labels: %s" % ", ".join(pred_class_names) |
|
|
|
inputs = gr.inputs.Image(type='pil') |
|
outputs = gr.outputs.Textbox(label="Output") |
|
|
|
title = "Omnivore" |
|
|
|
description = "Gradio demo for Omnivore: A Single Model for Many Visual Modalities. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.08377' target='_blank'>Omnivore: A Single Model for Many Visual Modalities</a> | <a href='https://github.com/facebookresearch/omnivore' target='_blank'>Github Repo</a></p>" |
|
|
|
|
|
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['library.jpg']]).launch(enable_queue=True,cache_examples=True) |
|
|
|
|