Spaces:
Build error
Build error
File size: 4,127 Bytes
52d252c 8941262 52d252c 7b10f82 52d252c 0cc1558 8941262 cd1eaaf 52d252c 0cc1558 52d252c 76ea7e0 52d252c 0cc1558 8941262 a4fc95a 8941262 0cc1558 8941262 bc8701f 76ea7e0 0cc1558 52d252c 263f380 52d252c a3348bb 0cc1558 8941262 644c87b 0cc1558 8941262 f692f52 8941262 adf5cfd acf7bcd 7b10f82 1a7da4b 11c3557 8941262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import sys
import torch
import gradio as gr
import numpy as np
import torchvision.transforms as transforms
from torch.autograd import Variable
from network.Transformer import Transformer
import logging
logger = logging.getLogger(__name__)
MAX_DIMENSION = 1280
MODEL_PATH = "models"
COLOUR_MODEL = "RGB"
STYLE_SHINKAI = "Makoto Shinkai"
STYLE_HOSODA = "Mamoru Hosoda"
STYLE_MIYAZAKI = "Hayao Miyazaki"
STYLE_KON = "Satoshi Kon"
DEFAULT_STYLE = STYLE_SHINKAI
STYLE_CHOICE_LIST = [STYLE_SHINKAI, STYLE_HOSODA, STYLE_MIYAZAKI, STYLE_KON]
shinkai_model = Transformer()
hosoda_model = Transformer()
miyazaki_model = Transformer()
kon_model = Transformer()
shinkai_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "shinkai_makoto.pth"))
)
hosoda_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "hosoda_mamoru.pth"))
)
miyazaki_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "miyazaki_hayao.pth"))
)
kon_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "kon_satoshi.pth"))
)
shinkai_model.eval()
hosoda_model.eval()
miyazaki_model.eval()
kon_model.eval()
disable_gpu = True
def get_model(style):
if style == STYLE_SHINKAI:
return shinkai_model
elif style == STYLE_HOSODA:
return hosoda_model
elif style == STYLE_MIYAZAKI:
return miyazaki_model
elif style == STYLE_KON:
return kon_model
else:
logger.warning(
f"Style {style} not found. Defaulting to Makoto Shinkai"
)
return shinkai_model
def validate_image_size(img):
logger.info(f"Image Height: {img.height}, Image Width: {img.width}")
if img.height > MAX_DIMENSION or img.width > MAX_DIMENSION:
raise RuntimeError(
"Image size is too large. Please use an image less than {MAX_DIMENSION}px on both width and height"
)
def inference(img, style):
validate_image_size(img)
# load image
input_image = img.convert(COLOUR_MODEL)
input_image = np.asarray(input_image)
# RGB -> BGR
input_image = input_image[:, :, [2, 1, 0]]
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# preprocess, (-1, 1)
input_image = -1 + 2 * input_image
if disable_gpu:
input_image = Variable(input_image).float()
else:
input_image = Variable(input_image).cuda()
# forward
model = get_model(style)
output_image = model(input_image)
output_image = output_image[0]
# BGR -> RGB
output_image = output_image[[2, 1, 0], :, :]
output_image = output_image.data.cpu().float() * 0.5 + 0.5
return transforms.ToPILImage()(output_image)
title = "Anime Background GAN"
description = "Gradio Demo for CartoonGAN by Chen Et. Al. Models are Shinkai Makoto, Hosoda Mamoru, Kon Satoshi, and Miyazaki Hayao."
article = "<p style='text-align: center'><a href='http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf' target='_blank'>CartoonGAN Whitepaper from Chen et.al</a></p><p style='text-align: center'><a href='https://github.com/venture-anime/cartoongan-pytorch' target='_blank'>Github Repo</a></p><p style='text-align: center'><a href='https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch' target='_blank'>Original Implementation from Yijunmaverick</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akiyamasho' alt='visitor badge'></center></p>"
examples = [
["examples/garden_in.jpg", STYLE_SHINKAI],
["examples/library_in.jpg", STYLE_KON],
]
gr.Interface(
fn=inference,
inputs=[
gr.inputs.Image(
type="pil",
label="Input Photo (less than 1280px on both width and height)",
),
gr.inputs.Dropdown(
STYLE_CHOICE_LIST,
type="value",
default=DEFAULT_STYLE,
label="Style",
),
],
outputs=gr.outputs.Image(
type="pil",
label="Output Image",
),
title=title,
description=description,
article=article,
examples=examples,
allow_flagging="never",
allow_screenshot=False,
).launch(enable_queue=True)
|