File size: 4,127 Bytes
52d252c
8941262
52d252c
 
 
 
 
7b10f82
52d252c
 
 
0cc1558
 
 
 
8941262
cd1eaaf
52d252c
 
0cc1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d252c
76ea7e0
52d252c
 
0cc1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8941262
a4fc95a
8941262
 
 
 
 
 
0cc1558
8941262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc8701f
 
 
76ea7e0
0cc1558
52d252c
 
263f380
 
52d252c
 
 
 
a3348bb
0cc1558
8941262
 
 
 
644c87b
0cc1558
 
 
 
 
 
8941262
 
f692f52
8941262
adf5cfd
 
acf7bcd
7b10f82
1a7da4b
11c3557
8941262
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import sys
import torch
import gradio as gr
import numpy as np
import torchvision.transforms as transforms


from torch.autograd import Variable
from network.Transformer import Transformer

import logging

logger = logging.getLogger(__name__)

MAX_DIMENSION = 1280
MODEL_PATH = "models"
COLOUR_MODEL = "RGB"

STYLE_SHINKAI = "Makoto Shinkai"
STYLE_HOSODA = "Mamoru Hosoda"
STYLE_MIYAZAKI = "Hayao Miyazaki"
STYLE_KON = "Satoshi Kon"
DEFAULT_STYLE = STYLE_SHINKAI
STYLE_CHOICE_LIST = [STYLE_SHINKAI, STYLE_HOSODA, STYLE_MIYAZAKI, STYLE_KON]

shinkai_model = Transformer()
hosoda_model = Transformer()
miyazaki_model = Transformer()
kon_model = Transformer()


shinkai_model.load_state_dict(
    torch.load(os.path.join(MODEL_PATH, "shinkai_makoto.pth"))
)
hosoda_model.load_state_dict(
    torch.load(os.path.join(MODEL_PATH, "hosoda_mamoru.pth"))
)
miyazaki_model.load_state_dict(
    torch.load(os.path.join(MODEL_PATH, "miyazaki_hayao.pth"))
)
kon_model.load_state_dict(
    torch.load(os.path.join(MODEL_PATH, "kon_satoshi.pth"))
)

shinkai_model.eval()
hosoda_model.eval()
miyazaki_model.eval()
kon_model.eval()

disable_gpu = True


def get_model(style):
    if style == STYLE_SHINKAI:
        return shinkai_model
    elif style == STYLE_HOSODA:
        return hosoda_model
    elif style == STYLE_MIYAZAKI:
        return miyazaki_model
    elif style == STYLE_KON:
        return kon_model
    else:
        logger.warning(
            f"Style {style} not found. Defaulting to Makoto Shinkai"
        )
        return shinkai_model


def validate_image_size(img):
    logger.info(f"Image Height: {img.height}, Image Width: {img.width}")
    if img.height > MAX_DIMENSION or img.width > MAX_DIMENSION:
        raise RuntimeError(
            "Image size is too large. Please use an image less than {MAX_DIMENSION}px on both width and height"
        )


def inference(img, style):
    validate_image_size(img)

    # load image
    input_image = img.convert(COLOUR_MODEL)
    input_image = np.asarray(input_image)
    # RGB -> BGR
    input_image = input_image[:, :, [2, 1, 0]]
    input_image = transforms.ToTensor()(input_image).unsqueeze(0)
    # preprocess, (-1, 1)
    input_image = -1 + 2 * input_image

    if disable_gpu:
        input_image = Variable(input_image).float()
    else:
        input_image = Variable(input_image).cuda()

    # forward
    model = get_model(style)
    output_image = model(input_image)
    output_image = output_image[0]
    # BGR -> RGB
    output_image = output_image[[2, 1, 0], :, :]
    output_image = output_image.data.cpu().float() * 0.5 + 0.5

    return transforms.ToPILImage()(output_image)


title = "Anime Background GAN"
description = "Gradio Demo for CartoonGAN by Chen Et. Al. Models are Shinkai Makoto, Hosoda Mamoru, Kon Satoshi, and Miyazaki Hayao."
article = "<p style='text-align: center'><a href='http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf' target='_blank'>CartoonGAN Whitepaper from Chen et.al</a></p><p style='text-align: center'><a href='https://github.com/venture-anime/cartoongan-pytorch' target='_blank'>Github Repo</a></p><p style='text-align: center'><a href='https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch' target='_blank'>Original Implementation from Yijunmaverick</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akiyamasho' alt='visitor badge'></center></p>"

examples = [
    ["examples/garden_in.jpg", STYLE_SHINKAI],
    ["examples/library_in.jpg", STYLE_KON],
]


gr.Interface(
    fn=inference,
    inputs=[
        gr.inputs.Image(
            type="pil",
            label="Input Photo (less than 1280px on both width and height)",
        ),
        gr.inputs.Dropdown(
            STYLE_CHOICE_LIST,
            type="value",
            default=DEFAULT_STYLE,
            label="Style",
        ),
    ],
    outputs=gr.outputs.Image(
        type="pil",
        label="Output Image",
    ),
    title=title,
    description=description,
    article=article,
    examples=examples,
    allow_flagging="never",
    allow_screenshot=False,
).launch(enable_queue=True)