Spaces:
Build error
Build error
File size: 2,204 Bytes
52d252c cd1eaaf 52d252c bc8701f 52d252c bc8701f 52d252c bc8701f 52d252c a3348bb bc8701f adf5cfd 9cf125f 52d252c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import os
os.system("pip install gradio==2.4.6")
import torch
import gradio as gr
import numpy as np
import torchvision.utils as vutils
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
from network.Transformer import Transformer
LOAD_SIZE = 1280
STYLE = "shinkai_makoto"
MODEL_PATH = "models"
COLOUR_MODEL = "RGB"
model = Transformer()
model.load_state_dict(torch.load(os.path.join(MODEL_PATH, f"{STYLE}.pth")))
model.eval()
disable_gpu = torch.cuda.is_available()
def inference(img):
# load image
input_image = img.convert(COLOUR_MODEL)
input_image = np.asarray(input_image)
# RGB -> BGR
input_image = input_image[:, :, [2, 1, 0]]
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# preprocess, (-1, 1)
input_image = -1 + 2 * input_image
if disable_gpu:
input_image = Variable(input_image).float()
else:
input_image = Variable(input_image).cuda()
# forward
output_image = model(input_image)
output_image = output_image[0]
# BGR -> RGB
output_image = output_image[[2, 1, 0], :, :]
output_image = output_image.data.cpu().float() * 0.5 + 0.5
return output_image
title = "Anime Background GAN"
description = "<a href='http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf' target='_blank'>CartoonGAN from Chen et.al</a> based on <a href='https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch' target='_blank'>Yijunmaverick's implementation</a>."
article = "<p style='text-align: center'><a href='https://github.com/venture-anime/cartoongan-pytorch' target='_blank'>Github Repo</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akiyamasho' alt='visitor badge'></center></p>"
examples = [
["examples/garden_in.jpeg", "examples/garden_out.jpg"],
["examples/library_in.jpeg", "examples/library_out.jpg"],
]
gr.Interface(
fn=inference,
inputs=[gr.inputs.Image(type="pil")],
outputs=gr.outputs.Image(type="pil"),
title=title,
description=description,
article=None,
examples=None,
allow_flagging=False,
allow_screenshot=False,
enable_queue=True,
).launch()
|