Spaces:
Build error
Build error
File size: 4,333 Bytes
52d252c 8941262 52d252c 7b10f82 52d252c af3dcd2 0cc1558 a8868f5 0cc1558 8941262 cd1eaaf 52d252c 0cc1558 bb55b33 0cc1558 bb55b33 0cc1558 bb55b33 0cc1558 bb55b33 0cc1558 52d252c bb55b33 52d252c 0cc1558 af3dcd2 a4fc95a 8941262 0055c8e 0df0208 af3dcd2 8941262 0cc1558 af3dcd2 8941262 0055c8e 91a3469 8941262 0055c8e 91a3469 0055c8e 8941262 bc8701f 76ea7e0 0cc1558 52d252c 263f380 52d252c a3348bb 0cc1558 8941262 644c87b 0cc1558 8941262 f692f52 8941262 adf5cfd acf7bcd 7b10f82 1a7da4b 11c3557 8941262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import sys
import torch
import gradio as gr
import numpy as np
import torchvision.transforms as transforms
from torch.autograd import Variable
from network.Transformer import Transformer
from PIL import Image
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MAX_DIMENSION = 1280
MODEL_PATH = "models"
COLOUR_MODEL = "RGB"
STYLE_SHINKAI = "Makoto Shinkai"
STYLE_HOSODA = "Mamoru Hosoda"
STYLE_MIYAZAKI = "Hayao Miyazaki"
STYLE_KON = "Satoshi Kon"
DEFAULT_STYLE = STYLE_SHINKAI
STYLE_CHOICE_LIST = [STYLE_SHINKAI, STYLE_HOSODA, STYLE_MIYAZAKI, STYLE_KON]
shinkai_model = Transformer()
hosoda_model = Transformer()
miyazaki_model = Transformer()
kon_model = Transformer()
shinkai_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "shinkai_makoto.pth"))
)
hosoda_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "hosoda_mamoru.pth"))
)
miyazaki_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "miyazaki_hayao.pth"))
)
kon_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "kon_satoshi.pth"))
)
shinkai_model.eval()
hosoda_model.eval()
miyazaki_model.eval()
kon_model.eval()
enable_gpu = torch.cuda.is_available()
def get_model(style):
if style == STYLE_SHINKAI:
return shinkai_model
elif style == STYLE_HOSODA:
return hosoda_model
elif style == STYLE_MIYAZAKI:
return miyazaki_model
elif style == STYLE_KON:
return kon_model
else:
logger.warning(
f"Style {style} not found. Defaulting to Makoto Shinkai"
)
return shinkai_model
def adjust_image_for_model(img):
logger.info(f"Image Height: {img.height}, Image Width: {img.width}")
if img.height > MAX_DIMENSION or img.width > MAX_DIMENSION:
logger.info(f"Dimensions too large. Resizing to {MAX_DIMENSION}px.")
img.thumbnail((MAX_DIMENSION, MAX_DIMENSION), Image.ANTIALIAS)
return img
def inference(img, style):
img = adjust_image_for_model(img)
# load image
input_image = img.convert(COLOUR_MODEL)
input_image = np.asarray(input_image)
# RGB -> BGR
input_image = input_image[:, :, [2, 1, 0]]
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# preprocess, (-1, 1)
input_image = -1 + 2 * input_image
if enable_gpu:
logger.info(f"CUDA found. Using GPU.")
input_image = Variable(input_image).cuda()
else:
logger.info(f"CUDA not found. Using CPU.")
input_image = Variable(input_image).float()
# forward
model = get_model(style)
output_image = model(input_image)
output_image = output_image[0]
# BGR -> RGB
output_image = output_image[[2, 1, 0], :, :]
output_image = output_image.data.cpu().float() * 0.5 + 0.5
return transforms.ToPILImage()(output_image)
title = "Anime Background GAN"
description = "Gradio Demo for CartoonGAN by Chen Et. Al. Models are Shinkai Makoto, Hosoda Mamoru, Kon Satoshi, and Miyazaki Hayao."
article = "<p style='text-align: center'><a href='http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf' target='_blank'>CartoonGAN Whitepaper from Chen et.al</a></p><p style='text-align: center'><a href='https://github.com/venture-anime/cartoongan-pytorch' target='_blank'>Github Repo</a></p><p style='text-align: center'><a href='https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch' target='_blank'>Original Implementation from Yijunmaverick</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akiyamasho' alt='visitor badge'></center></p>"
examples = [
["examples/garden_in.jpg", STYLE_SHINKAI],
["examples/library_in.jpg", STYLE_KON],
]
gr.Interface(
fn=inference,
inputs=[
gr.inputs.Image(
type="pil",
label="Input Photo (less than 1280px on both width and height)",
),
gr.inputs.Dropdown(
STYLE_CHOICE_LIST,
type="value",
default=DEFAULT_STYLE,
label="Style",
),
],
outputs=gr.outputs.Image(
type="pil",
label="Output Image",
),
title=title,
description=description,
article=article,
examples=examples,
allow_flagging="never",
allow_screenshot=False,
).launch(enable_queue=True)
|