秋山翔
MAINT: logging cleanup
a4fc95a
raw
history blame
4.13 kB
import os
import sys
import torch
import gradio as gr
import numpy as np
import torchvision.transforms as transforms
from torch.autograd import Variable
from network.Transformer import Transformer
import logging
logger = logging.getLogger(__name__)
MAX_DIMENSION = 1280
MODEL_PATH = "models"
COLOUR_MODEL = "RGB"
STYLE_SHINKAI = "Makoto Shinkai"
STYLE_HOSODA = "Mamoru Hosoda"
STYLE_MIYAZAKI = "Hayao Miyazaki"
STYLE_KON = "Satoshi Kon"
DEFAULT_STYLE = STYLE_SHINKAI
STYLE_CHOICE_LIST = [STYLE_SHINKAI, STYLE_HOSODA, STYLE_MIYAZAKI, STYLE_KON]
shinkai_model = Transformer()
hosoda_model = Transformer()
miyazaki_model = Transformer()
kon_model = Transformer()
shinkai_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "shinkai_makoto.pth"))
)
hosoda_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "hosoda_mamoru.pth"))
)
miyazaki_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "miyazaki_hayao.pth"))
)
kon_model.load_state_dict(
torch.load(os.path.join(MODEL_PATH, "kon_satoshi.pth"))
)
shinkai_model.eval()
hosoda_model.eval()
miyazaki_model.eval()
kon_model.eval()
disable_gpu = True
def get_model(style):
if style == STYLE_SHINKAI:
return shinkai_model
elif style == STYLE_HOSODA:
return hosoda_model
elif style == STYLE_MIYAZAKI:
return miyazaki_model
elif style == STYLE_KON:
return kon_model
else:
logger.warning(
f"Style {style} not found. Defaulting to Makoto Shinkai"
)
return shinkai_model
def validate_image_size(img):
logger.info(f"Image Height: {img.height}, Image Width: {img.width}")
if img.height > MAX_DIMENSION or img.width > MAX_DIMENSION:
raise RuntimeError(
"Image size is too large. Please use an image less than {MAX_DIMENSION}px on both width and height"
)
def inference(img, style):
validate_image_size(img)
# load image
input_image = img.convert(COLOUR_MODEL)
input_image = np.asarray(input_image)
# RGB -> BGR
input_image = input_image[:, :, [2, 1, 0]]
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# preprocess, (-1, 1)
input_image = -1 + 2 * input_image
if disable_gpu:
input_image = Variable(input_image).float()
else:
input_image = Variable(input_image).cuda()
# forward
model = get_model(style)
output_image = model(input_image)
output_image = output_image[0]
# BGR -> RGB
output_image = output_image[[2, 1, 0], :, :]
output_image = output_image.data.cpu().float() * 0.5 + 0.5
return transforms.ToPILImage()(output_image)
title = "Anime Background GAN"
description = "Gradio Demo for CartoonGAN by Chen Et. Al. Models are Shinkai Makoto, Hosoda Mamoru, Kon Satoshi, and Miyazaki Hayao."
article = "<p style='text-align: center'><a href='http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf' target='_blank'>CartoonGAN Whitepaper from Chen et.al</a></p><p style='text-align: center'><a href='https://github.com/venture-anime/cartoongan-pytorch' target='_blank'>Github Repo</a></p><p style='text-align: center'><a href='https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch' target='_blank'>Original Implementation from Yijunmaverick</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akiyamasho' alt='visitor badge'></center></p>"
examples = [
["examples/garden_in.jpg", STYLE_SHINKAI],
["examples/library_in.jpg", STYLE_KON],
]
gr.Interface(
fn=inference,
inputs=[
gr.inputs.Image(
type="pil",
label="Input Photo (less than 1280px on both width and height)",
),
gr.inputs.Dropdown(
STYLE_CHOICE_LIST,
type="value",
default=DEFAULT_STYLE,
label="Style",
),
],
outputs=gr.outputs.Image(
type="pil",
label="Output Image",
),
title=title,
description=description,
article=article,
examples=examples,
allow_flagging="never",
allow_screenshot=False,
).launch(enable_queue=True)