Spaces:
Build error
Build error
秋山翔
commited on
Commit
•
51a7dff
1
Parent(s):
a3348bb
TEST: debug gradio not rendering
Browse files
app.py
CHANGED
@@ -16,36 +16,38 @@ STYLE = "shinkai_makoto"
|
|
16 |
MODEL_PATH = "models"
|
17 |
COLOUR_MODEL = "RGB"
|
18 |
|
19 |
-
model = Transformer()
|
20 |
-
model.load_state_dict(torch.load(os.path.join(MODEL_PATH, f"{STYLE}.pth")))
|
21 |
-
model.eval()
|
22 |
|
23 |
-
disable_gpu = torch.cuda.is_available()
|
24 |
|
25 |
|
26 |
def inference(img):
|
27 |
-
# load image
|
28 |
-
input_image = img.convert(COLOUR_MODEL)
|
29 |
-
input_image = np.asarray(input_image)
|
30 |
-
# RGB -> BGR
|
31 |
-
input_image = input_image[:, :, [2, 1, 0]]
|
32 |
-
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
|
33 |
-
# preprocess, (-1, 1)
|
34 |
-
input_image = -1 + 2 * input_image
|
35 |
-
|
36 |
-
if disable_gpu:
|
37 |
-
|
38 |
-
else:
|
39 |
-
|
40 |
-
|
41 |
-
# forward
|
42 |
-
output_image = model(input_image)
|
43 |
-
output_image = output_image[0]
|
44 |
-
# BGR -> RGB
|
45 |
-
output_image = output_image[[2, 1, 0], :, :]
|
46 |
-
output_image = output_image.data.cpu().float() * 0.5 + 0.5
|
47 |
-
|
48 |
-
return output_image
|
|
|
|
|
49 |
|
50 |
|
51 |
title = "AnimeBackgroundGAN"
|
|
|
16 |
MODEL_PATH = "models"
|
17 |
COLOUR_MODEL = "RGB"
|
18 |
|
19 |
+
# model = Transformer()
|
20 |
+
# model.load_state_dict(torch.load(os.path.join(MODEL_PATH, f"{STYLE}.pth")))
|
21 |
+
# model.eval()
|
22 |
|
23 |
+
# disable_gpu = torch.cuda.is_available()
|
24 |
|
25 |
|
26 |
def inference(img):
|
27 |
+
# # load image
|
28 |
+
# input_image = img.convert(COLOUR_MODEL)
|
29 |
+
# input_image = np.asarray(input_image)
|
30 |
+
# # RGB -> BGR
|
31 |
+
# input_image = input_image[:, :, [2, 1, 0]]
|
32 |
+
# input_image = transforms.ToTensor()(input_image).unsqueeze(0)
|
33 |
+
# # preprocess, (-1, 1)
|
34 |
+
# input_image = -1 + 2 * input_image
|
35 |
+
|
36 |
+
# if disable_gpu:
|
37 |
+
# input_image = Variable(input_image).float()
|
38 |
+
# else:
|
39 |
+
# input_image = Variable(input_image).cuda()
|
40 |
+
|
41 |
+
# # forward
|
42 |
+
# output_image = model(input_image)
|
43 |
+
# output_image = output_image[0]
|
44 |
+
# # BGR -> RGB
|
45 |
+
# output_image = output_image[[2, 1, 0], :, :]
|
46 |
+
# output_image = output_image.data.cpu().float() * 0.5 + 0.5
|
47 |
+
|
48 |
+
# return output_image
|
49 |
+
|
50 |
+
return ""
|
51 |
|
52 |
|
53 |
title = "AnimeBackgroundGAN"
|
main.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
-
import numpy as np
|
4 |
-
import torchvision.utils as vutils
|
5 |
-
|
6 |
-
from PIL import Image
|
7 |
-
import torchvision.transforms as transforms
|
8 |
-
from torch.autograd import Variable
|
9 |
-
|
10 |
-
from network.Transformer import Transformer
|
11 |
-
import argparse
|
12 |
-
|
13 |
-
parser = argparse.ArgumentParser()
|
14 |
-
parser.add_argument("--input_dir", default="test_img")
|
15 |
-
parser.add_argument("--load_size", default=1280)
|
16 |
-
parser.add_argument("--model_path", default="./pretrained_model")
|
17 |
-
parser.add_argument("--style", default="Shinkai")
|
18 |
-
parser.add_argument("--output_dir", default="test_output")
|
19 |
-
parser.add_argument("--gpu", type=int, default=0)
|
20 |
-
|
21 |
-
opt = parser.parse_args()
|
22 |
-
|
23 |
-
valid_ext = [".jpg", ".png"]
|
24 |
-
|
25 |
-
# setup
|
26 |
-
if not os.path.exists(opt.input_dir):
|
27 |
-
os.makedirs(opt.input_dir)
|
28 |
-
if not os.path.exists(opt.output_dir):
|
29 |
-
os.makedirs(opt.output_dir)
|
30 |
-
|
31 |
-
# load pretrained model
|
32 |
-
model = Transformer()
|
33 |
-
model.load_state_dict(
|
34 |
-
torch.load(os.path.join(opt.model_path, opt.style + "_net_G_float.pth"))
|
35 |
-
)
|
36 |
-
model.eval()
|
37 |
-
|
38 |
-
disable_gpu = opt.gpu == -1 or not torch.cuda.is_available()
|
39 |
-
|
40 |
-
if disable_gpu:
|
41 |
-
print("CPU mode")
|
42 |
-
model.float()
|
43 |
-
else:
|
44 |
-
print("GPU mode")
|
45 |
-
model.cuda()
|
46 |
-
|
47 |
-
for files in os.listdir(opt.input_dir):
|
48 |
-
ext = os.path.splitext(files)[1]
|
49 |
-
if ext not in valid_ext:
|
50 |
-
continue
|
51 |
-
# load image
|
52 |
-
input_image = Image.open(os.path.join(opt.input_dir, files)).convert("RGB")
|
53 |
-
input_image = np.asarray(input_image)
|
54 |
-
# RGB -> BGR
|
55 |
-
input_image = input_image[:, :, [2, 1, 0]]
|
56 |
-
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
|
57 |
-
# preprocess, (-1, 1)
|
58 |
-
input_image = -1 + 2 * input_image
|
59 |
-
if disable_gpu:
|
60 |
-
input_image = Variable(input_image).float()
|
61 |
-
else:
|
62 |
-
input_image = Variable(input_image).cuda()
|
63 |
-
|
64 |
-
# forward
|
65 |
-
output_image = model(input_image)
|
66 |
-
output_image = output_image[0]
|
67 |
-
# BGR -> RGB
|
68 |
-
output_image = output_image[[2, 1, 0], :, :]
|
69 |
-
output_image = output_image.data.cpu().float() * 0.5 + 0.5
|
70 |
-
# save
|
71 |
-
vutils.save_image(
|
72 |
-
output_image,
|
73 |
-
os.path.join(opt.output_dir, files[:-4] + "_" + opt.style + ".jpg"),
|
74 |
-
)
|
75 |
-
|
76 |
-
print("Done!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|