Spaces:
Runtime error
Runtime error
Init
Browse files- LICENSE +21 -0
- README.md +1 -5
- app.py +97 -0
- configs/DNS-large-full.json +54 -0
- configs/DNS-large-high.json +54 -0
- dataset.py +120 -0
- denoise.py +124 -0
- exp/DNS-large-full/checkpoint/pretrained.pkl +3 -0
- exp/DNS-large-high/checkpoint/pretrained.pkl +3 -0
- network.py +386 -0
- requirements.txt +0 -0
- util.py +224 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 NVIDIA CORPORATION.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
---
|
2 |
title: Nvidia Denoiser
|
3 |
emoji: 🔥
|
4 |
colorFrom: blue
|
@@ -7,7 +6,4 @@ sdk: gradio
|
|
7 |
sdk_version: 3.23.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
1 |
title: Nvidia Denoiser
|
2 |
emoji: 🔥
|
3 |
colorFrom: blue
|
|
|
6 |
sdk_version: 3.23.0
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: apache-2.0
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from tqdm import tqdm
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import random
|
11 |
+
random.seed(0)
|
12 |
+
torch.manual_seed(0)
|
13 |
+
np.random.seed(0)
|
14 |
+
|
15 |
+
from scipy.io.wavfile import write as wavwrite
|
16 |
+
|
17 |
+
from util import print_size, sampling
|
18 |
+
from network import CleanUNet
|
19 |
+
import torchaudio
|
20 |
+
|
21 |
+
def load_simple(filename):
|
22 |
+
audio, _ = torchaudio.load(filename)
|
23 |
+
return audio
|
24 |
+
|
25 |
+
CONFIG = "configs/DNS-large-full.json"
|
26 |
+
CHECKPOINT = "./exp/DNS-large-high/checkpoint/pretrained.pkl"
|
27 |
+
|
28 |
+
# Parse configs. Globals nicer in this case
|
29 |
+
with open(CONFIG) as f:
|
30 |
+
data = f.read()
|
31 |
+
config = json.loads(data)
|
32 |
+
gen_config = config["gen_config"]
|
33 |
+
global network_config
|
34 |
+
network_config = config["network_config"] # to define wavenet
|
35 |
+
global train_config
|
36 |
+
train_config = config["train_config"] # train config
|
37 |
+
global trainset_config
|
38 |
+
trainset_config = config["trainset_config"] # to read trainset configurations
|
39 |
+
|
40 |
+
def denoise(files, ckpt_path):
|
41 |
+
"""
|
42 |
+
Denoise audio
|
43 |
+
Parameters:
|
44 |
+
output_directory (str): save generated speeches to this path
|
45 |
+
ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded;
|
46 |
+
automitically selects the maximum iteration if 'max' is selected
|
47 |
+
subset (str): training, testing, validation
|
48 |
+
dump (bool): whether save enhanced (denoised) audio
|
49 |
+
"""
|
50 |
+
|
51 |
+
# setup local experiment path
|
52 |
+
exp_path = train_config["exp_path"]
|
53 |
+
print('exp_path:', exp_path)
|
54 |
+
|
55 |
+
# load data
|
56 |
+
loader_config = deepcopy(trainset_config)
|
57 |
+
loader_config["crop_length_sec"] = 0
|
58 |
+
|
59 |
+
# predefine model
|
60 |
+
net = CleanUNet(**network_config)
|
61 |
+
print_size(net)
|
62 |
+
|
63 |
+
# load checkpoint
|
64 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
65 |
+
net.load_state_dict(checkpoint['model_state_dict'])
|
66 |
+
net.eval()
|
67 |
+
|
68 |
+
# inference
|
69 |
+
batch_size = 1000000
|
70 |
+
for file_path in tqdm(files):
|
71 |
+
file_name = os.path.basename(file_path)
|
72 |
+
file_dir = os.path.dirname(file_name)
|
73 |
+
new_file_name = file_name + "_denoised.wav"
|
74 |
+
noisy_audio = load_simple(file_path)
|
75 |
+
LENGTH = len(noisy_audio[0].squeeze())
|
76 |
+
noisy_audio = torch.chunk(noisy_audio, LENGTH // batch_size + 1, dim=1)
|
77 |
+
all_audio = []
|
78 |
+
|
79 |
+
for batch in tqdm(noisy_audio):
|
80 |
+
with torch.no_grad():
|
81 |
+
generated_audio = sampling(net, batch)
|
82 |
+
generated_audio = generated_audio.cpu().numpy().squeeze()
|
83 |
+
all_audio.append(generated_audio)
|
84 |
+
|
85 |
+
all_audio = np.concatenate(all_audio, axis=0)
|
86 |
+
save_file = os.path.join(file_dir, new_file_name)
|
87 |
+
print("saved to:", save_file)
|
88 |
+
wavwrite(save_file, 32000, all_audio.squeeze())
|
89 |
+
|
90 |
+
|
91 |
+
audio = gr.inputs.Audio(label = "Audio to denoise", type = 'filepath')
|
92 |
+
inputs = [audio, CHECKPOINT]
|
93 |
+
outputs = gr.outputs.Audio(label = "Denoised audio", type = 'filepath')
|
94 |
+
|
95 |
+
title = "Speech Denoising in the Waveform Domain with Self-Attention from Nvidia"
|
96 |
+
|
97 |
+
gr.Interface(denoise, inputs, outputs, title=title, enable_queue=True).launch()
|
configs/DNS-large-full.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"network_config": {
|
3 |
+
"channels_input": 1,
|
4 |
+
"channels_output": 1,
|
5 |
+
"channels_H": 64,
|
6 |
+
"max_H": 768,
|
7 |
+
"encoder_n_layers": 8,
|
8 |
+
"kernel_size": 4,
|
9 |
+
"stride": 2,
|
10 |
+
"tsfm_n_layers": 5,
|
11 |
+
"tsfm_n_head": 8,
|
12 |
+
"tsfm_d_model": 512,
|
13 |
+
"tsfm_d_inner": 2048
|
14 |
+
},
|
15 |
+
"train_config": {
|
16 |
+
"exp_path": "DNS-large-full",
|
17 |
+
"log":{
|
18 |
+
"directory": "./exp",
|
19 |
+
"ckpt_iter": "max",
|
20 |
+
"iters_per_ckpt": 10000,
|
21 |
+
"iters_per_valid": 500
|
22 |
+
},
|
23 |
+
"optimization":{
|
24 |
+
"n_iters": 250000,
|
25 |
+
"learning_rate": 2e-4,
|
26 |
+
"batch_size_per_gpu": 8
|
27 |
+
},
|
28 |
+
"loss_config":{
|
29 |
+
"ell_p": 1,
|
30 |
+
"ell_p_lambda": 1,
|
31 |
+
"stft_lambda": 1,
|
32 |
+
"stft_config":{
|
33 |
+
"sc_lambda": 0.5,
|
34 |
+
"mag_lambda": 0.5,
|
35 |
+
"band": "full",
|
36 |
+
"hop_sizes": [50, 120, 240],
|
37 |
+
"win_lengths": [240, 600, 1200],
|
38 |
+
"fft_sizes": [512, 1024, 2048]
|
39 |
+
}
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"trainset_config": {
|
43 |
+
"root": "./dns",
|
44 |
+
"crop_length_sec": 10,
|
45 |
+
"sample_rate": 16000
|
46 |
+
},
|
47 |
+
"gen_config":{
|
48 |
+
"output_directory": "./exp"
|
49 |
+
},
|
50 |
+
"dist_config": {
|
51 |
+
"dist_backend": "nccl",
|
52 |
+
"dist_url": "tcp://localhost:54321"
|
53 |
+
}
|
54 |
+
}
|
configs/DNS-large-high.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"network_config": {
|
3 |
+
"channels_input": 1,
|
4 |
+
"channels_output": 1,
|
5 |
+
"channels_H": 64,
|
6 |
+
"max_H": 768,
|
7 |
+
"encoder_n_layers": 8,
|
8 |
+
"kernel_size": 4,
|
9 |
+
"stride": 2,
|
10 |
+
"tsfm_n_layers": 5,
|
11 |
+
"tsfm_n_head": 8,
|
12 |
+
"tsfm_d_model": 512,
|
13 |
+
"tsfm_d_inner": 2048
|
14 |
+
},
|
15 |
+
"train_config": {
|
16 |
+
"exp_path": "DNS-large-high",
|
17 |
+
"log":{
|
18 |
+
"directory": "./exp",
|
19 |
+
"ckpt_iter": "max",
|
20 |
+
"iters_per_ckpt": 10000,
|
21 |
+
"iters_per_valid": 500
|
22 |
+
},
|
23 |
+
"optimization":{
|
24 |
+
"n_iters": 250000,
|
25 |
+
"learning_rate": 2e-4,
|
26 |
+
"batch_size_per_gpu": 8
|
27 |
+
},
|
28 |
+
"loss_config":{
|
29 |
+
"ell_p": 1,
|
30 |
+
"ell_p_lambda": 1,
|
31 |
+
"stft_lambda": 1,
|
32 |
+
"stft_config":{
|
33 |
+
"sc_lambda": 0.5,
|
34 |
+
"mag_lambda": 0.5,
|
35 |
+
"band": "high",
|
36 |
+
"hop_sizes": [50, 120, 240],
|
37 |
+
"win_lengths": [240, 600, 1200],
|
38 |
+
"fft_sizes": [512, 1024, 2048]
|
39 |
+
}
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"trainset_config": {
|
43 |
+
"root": "./dns",
|
44 |
+
"crop_length_sec": 10,
|
45 |
+
"sample_rate": 16000
|
46 |
+
},
|
47 |
+
"gen_config":{
|
48 |
+
"output_directory": "./exp"
|
49 |
+
},
|
50 |
+
"dist_config": {
|
51 |
+
"dist_backend": "nccl",
|
52 |
+
"dist_url": "tcp://localhost:54321"
|
53 |
+
}
|
54 |
+
}
|
dataset.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from scipy.io.wavfile import read as wavread
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings("ignore")
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch.utils.data import Dataset
|
13 |
+
from torch.utils.data.distributed import DistributedSampler
|
14 |
+
|
15 |
+
import random
|
16 |
+
random.seed(0)
|
17 |
+
torch.manual_seed(0)
|
18 |
+
np.random.seed(0)
|
19 |
+
|
20 |
+
from torchvision import datasets, models, transforms
|
21 |
+
import torchaudio
|
22 |
+
|
23 |
+
|
24 |
+
class CleanNoisyPairDataset(Dataset):
|
25 |
+
"""
|
26 |
+
Create a Dataset of clean and noisy audio pairs.
|
27 |
+
Each element is a tuple of the form (clean waveform, noisy waveform, file_id)
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, root='./', subset='training', crop_length_sec=0):
|
31 |
+
super(CleanNoisyPairDataset).__init__()
|
32 |
+
|
33 |
+
assert subset is None or subset in ["training", "testing"]
|
34 |
+
self.crop_length_sec = crop_length_sec
|
35 |
+
self.subset = subset
|
36 |
+
|
37 |
+
N_clean = len(os.listdir(os.path.join(root, 'training_set/clean')))
|
38 |
+
N_noisy = len(os.listdir(os.path.join(root, 'training_set/noisy')))
|
39 |
+
assert N_clean == N_noisy
|
40 |
+
|
41 |
+
if subset == "training":
|
42 |
+
self.files = [(os.path.join(root, 'training_set/clean', 'fileid_{}.wav'.format(i)),
|
43 |
+
os.path.join(root, 'training_set/noisy', 'fileid_{}.wav'.format(i))) for i in range(N_clean)]
|
44 |
+
|
45 |
+
elif subset == "testing":
|
46 |
+
sortkey = lambda name: '_'.join(name.split('_')[-2:]) # specific for dns due to test sample names
|
47 |
+
_p = os.path.join(root, 'datasets/test_set/synthetic/no_reverb') # path for DNS
|
48 |
+
|
49 |
+
clean_files = os.listdir(os.path.join(_p, 'clean'))
|
50 |
+
noisy_files = os.listdir(os.path.join(_p, 'noisy'))
|
51 |
+
|
52 |
+
clean_files.sort(key=sortkey)
|
53 |
+
noisy_files.sort(key=sortkey)
|
54 |
+
|
55 |
+
self.files = []
|
56 |
+
for _c, _n in zip(clean_files, noisy_files):
|
57 |
+
assert sortkey(_c) == sortkey(_n)
|
58 |
+
self.files.append((os.path.join(_p, 'clean', _c),
|
59 |
+
os.path.join(_p, 'noisy', _n)))
|
60 |
+
self.crop_length_sec = 0
|
61 |
+
|
62 |
+
else:
|
63 |
+
raise NotImplementedError
|
64 |
+
|
65 |
+
def __getitem__(self, n):
|
66 |
+
fileid = self.files[n]
|
67 |
+
clean_audio, sample_rate = torchaudio.load(fileid[0])
|
68 |
+
noisy_audio, sample_rate = torchaudio.load(fileid[1])
|
69 |
+
clean_audio, noisy_audio = clean_audio.squeeze(0), noisy_audio.squeeze(0)
|
70 |
+
assert len(clean_audio) == len(noisy_audio)
|
71 |
+
|
72 |
+
crop_length = int(self.crop_length_sec * sample_rate)
|
73 |
+
assert crop_length < len(clean_audio)
|
74 |
+
|
75 |
+
# random crop
|
76 |
+
if self.subset != 'testing' and crop_length > 0:
|
77 |
+
start = np.random.randint(low=0, high=len(clean_audio) - crop_length + 1)
|
78 |
+
clean_audio = clean_audio[start:(start + crop_length)]
|
79 |
+
noisy_audio = noisy_audio[start:(start + crop_length)]
|
80 |
+
|
81 |
+
clean_audio, noisy_audio = clean_audio.unsqueeze(0), noisy_audio.unsqueeze(0)
|
82 |
+
return (clean_audio, noisy_audio, fileid)
|
83 |
+
|
84 |
+
def __len__(self):
|
85 |
+
return len(self.files)
|
86 |
+
|
87 |
+
|
88 |
+
def load_CleanNoisyPairDataset(root, subset, crop_length_sec, batch_size, sample_rate, num_gpus=1):
|
89 |
+
"""
|
90 |
+
Get dataloader with distributed sampling
|
91 |
+
"""
|
92 |
+
dataset = CleanNoisyPairDataset(root=root, subset=subset, crop_length_sec=crop_length_sec)
|
93 |
+
kwargs = {"batch_size": batch_size, "num_workers": 4, "pin_memory": False, "drop_last": False}
|
94 |
+
|
95 |
+
if num_gpus > 1:
|
96 |
+
train_sampler = DistributedSampler(dataset)
|
97 |
+
dataloader = torch.utils.data.DataLoader(dataset, sampler=train_sampler, **kwargs)
|
98 |
+
else:
|
99 |
+
dataloader = torch.utils.data.DataLoader(dataset, sampler=None, shuffle=True, **kwargs)
|
100 |
+
|
101 |
+
return dataloader
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == '__main__':
|
105 |
+
import json
|
106 |
+
with open('./configs/DNS-large-full.json') as f:
|
107 |
+
data = f.read()
|
108 |
+
config = json.loads(data)
|
109 |
+
trainset_config = config["trainset_config"]
|
110 |
+
|
111 |
+
trainloader = load_CleanNoisyPairDataset(**trainset_config, subset='training', batch_size=2, num_gpus=1)
|
112 |
+
testloader = load_CleanNoisyPairDataset(**trainset_config, subset='testing', batch_size=2, num_gpus=1)
|
113 |
+
print(len(trainloader), len(testloader))
|
114 |
+
|
115 |
+
for clean_audio, noisy_audio, fileid in trainloader:
|
116 |
+
clean_audio = clean_audio.cuda()
|
117 |
+
noisy_audio = noisy_audio.cuda()
|
118 |
+
print(clean_audio.shape, noisy_audio.shape, fileid)
|
119 |
+
break
|
120 |
+
|
denoise.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
from tqdm import tqdm
|
5 |
+
from copy import deepcopy
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import random
|
11 |
+
random.seed(0)
|
12 |
+
torch.manual_seed(0)
|
13 |
+
np.random.seed(0)
|
14 |
+
|
15 |
+
from scipy.io.wavfile import write as wavwrite
|
16 |
+
|
17 |
+
from dataset import load_CleanNoisyPairDataset
|
18 |
+
from util import find_max_epoch, print_size, sampling
|
19 |
+
from network import CleanUNet
|
20 |
+
|
21 |
+
|
22 |
+
def denoise(output_directory, ckpt_iter, subset, dump=False):
|
23 |
+
"""
|
24 |
+
Denoise audio
|
25 |
+
|
26 |
+
Parameters:
|
27 |
+
output_directory (str): save generated speeches to this path
|
28 |
+
ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded;
|
29 |
+
automitically selects the maximum iteration if 'max' is selected
|
30 |
+
subset (str): training, testing, validation
|
31 |
+
dump (bool): whether save enhanced (denoised) audio
|
32 |
+
"""
|
33 |
+
|
34 |
+
# setup local experiment path
|
35 |
+
exp_path = train_config["exp_path"]
|
36 |
+
print('exp_path:', exp_path)
|
37 |
+
|
38 |
+
# load data
|
39 |
+
loader_config = deepcopy(trainset_config)
|
40 |
+
loader_config["crop_length_sec"] = 0
|
41 |
+
dataloader = load_CleanNoisyPairDataset(
|
42 |
+
**loader_config,
|
43 |
+
subset=subset,
|
44 |
+
batch_size=1,
|
45 |
+
num_gpus=1
|
46 |
+
)
|
47 |
+
|
48 |
+
# predefine model
|
49 |
+
net = CleanUNet(**network_config).cuda()
|
50 |
+
print_size(net)
|
51 |
+
|
52 |
+
# load checkpoint
|
53 |
+
ckpt_directory = os.path.join(train_config["log"]["directory"], exp_path, 'checkpoint')
|
54 |
+
if ckpt_iter == 'max':
|
55 |
+
ckpt_iter = find_max_epoch(ckpt_directory)
|
56 |
+
if ckpt_iter != 'pretrained':
|
57 |
+
ckpt_iter = int(ckpt_iter)
|
58 |
+
model_path = os.path.join(ckpt_directory, '{}.pkl'.format(ckpt_iter))
|
59 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
60 |
+
net.load_state_dict(checkpoint['model_state_dict'])
|
61 |
+
net.eval()
|
62 |
+
|
63 |
+
# get output directory ready
|
64 |
+
if ckpt_iter == "pretrained":
|
65 |
+
speech_directory = os.path.join(output_directory, exp_path, 'speech', ckpt_iter)
|
66 |
+
else:
|
67 |
+
speech_directory = os.path.join(output_directory, exp_path, 'speech', '{}k'.format(ckpt_iter//1000))
|
68 |
+
if dump and not os.path.isdir(speech_directory):
|
69 |
+
os.makedirs(speech_directory)
|
70 |
+
os.chmod(speech_directory, 0o775)
|
71 |
+
print("speech_directory: ", speech_directory, flush=True)
|
72 |
+
|
73 |
+
# inference
|
74 |
+
all_generated_audio = []
|
75 |
+
all_clean_audio = []
|
76 |
+
sortkey = lambda name: '_'.join(name.split('/')[-1].split('_')[1:])
|
77 |
+
for clean_audio, noisy_audio, fileid in tqdm(dataloader):
|
78 |
+
filename = sortkey(fileid[0][0])
|
79 |
+
|
80 |
+
noisy_audio = noisy_audio.cuda()
|
81 |
+
LENGTH = len(noisy_audio[0].squeeze())
|
82 |
+
generated_audio = sampling(net, noisy_audio)
|
83 |
+
|
84 |
+
if dump:
|
85 |
+
wavwrite(os.path.join(speech_directory, 'enhanced_{}'.format(filename)),
|
86 |
+
trainset_config["sample_rate"],
|
87 |
+
generated_audio[0].squeeze().cpu().numpy())
|
88 |
+
else:
|
89 |
+
all_clean_audio.append(clean_audio[0].squeeze().cpu().numpy())
|
90 |
+
all_generated_audio.append(generated_audio[0].squeeze().cpu().numpy())
|
91 |
+
|
92 |
+
return all_clean_audio, all_generated_audio
|
93 |
+
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
parser = argparse.ArgumentParser()
|
97 |
+
parser.add_argument('-c', '--config', type=str, default='config.json',
|
98 |
+
help='JSON file for configuration')
|
99 |
+
parser.add_argument('-ckpt_iter', '--ckpt_iter', default='max',
|
100 |
+
help='Which checkpoint to use; assign a number or "max" or "pretrained"')
|
101 |
+
parser.add_argument('-subset', '--subset', type=str, choices=['training', 'testing', 'validation'],
|
102 |
+
default='testing', help='subset for denoising')
|
103 |
+
args = parser.parse_args()
|
104 |
+
|
105 |
+
# Parse configs. Globals nicer in this case
|
106 |
+
with open(args.config) as f:
|
107 |
+
data = f.read()
|
108 |
+
config = json.loads(data)
|
109 |
+
gen_config = config["gen_config"]
|
110 |
+
global network_config
|
111 |
+
network_config = config["network_config"] # to define wavenet
|
112 |
+
global train_config
|
113 |
+
train_config = config["train_config"] # train config
|
114 |
+
global trainset_config
|
115 |
+
trainset_config = config["trainset_config"] # to read trainset configurations
|
116 |
+
|
117 |
+
torch.backends.cudnn.enabled = True
|
118 |
+
torch.backends.cudnn.benchmark = True
|
119 |
+
|
120 |
+
if args.subset == "testing":
|
121 |
+
denoise(gen_config["output_directory"],
|
122 |
+
subset=args.subset,
|
123 |
+
ckpt_iter=args.ckpt_iter,
|
124 |
+
dump=True)
|
exp/DNS-large-full/checkpoint/pretrained.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:145c101eb5bbfa3ba52fb2b4ec7e5b64a361c102f89291f75e1dd42601d95dc9
|
3 |
+
size 184336765
|
exp/DNS-large-high/checkpoint/pretrained.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:513d9e4f69483bf2bcc3059dd6b3644140763bf3f22df41d7ee366cc2cbd1829
|
3 |
+
size 184336765
|
network.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from util import weight_scaling_init
|
11 |
+
|
12 |
+
|
13 |
+
# Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch
|
14 |
+
# Original Copyright 2017 Victor Huang
|
15 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
16 |
+
|
17 |
+
class ScaledDotProductAttention(nn.Module):
|
18 |
+
''' Scaled Dot-Product Attention '''
|
19 |
+
|
20 |
+
def __init__(self, temperature, attn_dropout=0.1):
|
21 |
+
super().__init__()
|
22 |
+
self.temperature = temperature
|
23 |
+
self.dropout = nn.Dropout(attn_dropout)
|
24 |
+
|
25 |
+
def forward(self, q, k, v, mask=None):
|
26 |
+
|
27 |
+
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
28 |
+
|
29 |
+
if mask is not None:
|
30 |
+
_MASKING_VALUE = -1e9 if attn.dtype == torch.float32 else -1e4
|
31 |
+
attn = attn.masked_fill(mask == 0, _MASKING_VALUE)
|
32 |
+
|
33 |
+
attn = self.dropout(F.softmax(attn, dim=-1))
|
34 |
+
output = torch.matmul(attn, v)
|
35 |
+
|
36 |
+
return output, attn
|
37 |
+
|
38 |
+
|
39 |
+
class MultiHeadAttention(nn.Module):
|
40 |
+
''' Multi-Head Attention module '''
|
41 |
+
|
42 |
+
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
|
43 |
+
super().__init__()
|
44 |
+
|
45 |
+
self.n_head = n_head
|
46 |
+
self.d_k = d_k
|
47 |
+
self.d_v = d_v
|
48 |
+
|
49 |
+
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
|
50 |
+
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
|
51 |
+
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
|
52 |
+
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
|
53 |
+
|
54 |
+
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
|
55 |
+
|
56 |
+
self.dropout = nn.Dropout(dropout)
|
57 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
58 |
+
|
59 |
+
|
60 |
+
def forward(self, q, k, v, mask=None):
|
61 |
+
|
62 |
+
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
63 |
+
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
|
64 |
+
|
65 |
+
residual = q
|
66 |
+
|
67 |
+
# Pass through the pre-attention projection: b x lq x (n*dv)
|
68 |
+
# Separate different heads: b x lq x n x dv
|
69 |
+
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
70 |
+
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
71 |
+
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
72 |
+
|
73 |
+
# Transpose for attention dot product: b x n x lq x dv
|
74 |
+
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
75 |
+
|
76 |
+
if mask is not None:
|
77 |
+
mask = mask.unsqueeze(1) # For head axis broadcasting.
|
78 |
+
|
79 |
+
q, attn = self.attention(q, k, v, mask=mask)
|
80 |
+
|
81 |
+
# Transpose to move the head dimension back: b x lq x n x dv
|
82 |
+
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
|
83 |
+
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
|
84 |
+
q = self.dropout(self.fc(q))
|
85 |
+
q += residual
|
86 |
+
|
87 |
+
q = self.layer_norm(q)
|
88 |
+
|
89 |
+
return q, attn
|
90 |
+
|
91 |
+
|
92 |
+
class PositionwiseFeedForward(nn.Module):
|
93 |
+
''' A two-feed-forward-layer module '''
|
94 |
+
|
95 |
+
def __init__(self, d_in, d_hid, dropout=0.1):
|
96 |
+
super().__init__()
|
97 |
+
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
|
98 |
+
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
|
99 |
+
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
|
100 |
+
self.dropout = nn.Dropout(dropout)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
|
104 |
+
residual = x
|
105 |
+
|
106 |
+
x = self.w_2(F.relu(self.w_1(x)))
|
107 |
+
x = self.dropout(x)
|
108 |
+
x += residual
|
109 |
+
|
110 |
+
x = self.layer_norm(x)
|
111 |
+
|
112 |
+
return x
|
113 |
+
|
114 |
+
|
115 |
+
def get_subsequent_mask(seq):
|
116 |
+
''' For masking out the subsequent info. '''
|
117 |
+
sz_b, len_s = seq.size()
|
118 |
+
subsequent_mask = (1 - torch.triu(
|
119 |
+
torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
|
120 |
+
return subsequent_mask
|
121 |
+
|
122 |
+
|
123 |
+
class PositionalEncoding(nn.Module):
|
124 |
+
|
125 |
+
def __init__(self, d_hid, n_position=200):
|
126 |
+
super(PositionalEncoding, self).__init__()
|
127 |
+
|
128 |
+
# Not a parameter
|
129 |
+
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
|
130 |
+
|
131 |
+
def _get_sinusoid_encoding_table(self, n_position, d_hid):
|
132 |
+
''' Sinusoid position encoding table '''
|
133 |
+
# TODO: make it with torch instead of numpy
|
134 |
+
|
135 |
+
def get_position_angle_vec(position):
|
136 |
+
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
137 |
+
|
138 |
+
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
139 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
140 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
141 |
+
|
142 |
+
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
return x + self.pos_table[:, :x.size(1)].clone().detach()
|
146 |
+
|
147 |
+
|
148 |
+
class EncoderLayer(nn.Module):
|
149 |
+
''' Compose with two layers '''
|
150 |
+
|
151 |
+
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
|
152 |
+
super(EncoderLayer, self).__init__()
|
153 |
+
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
|
154 |
+
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
|
155 |
+
|
156 |
+
def forward(self, enc_input, slf_attn_mask=None):
|
157 |
+
enc_output, enc_slf_attn = self.slf_attn(
|
158 |
+
enc_input, enc_input, enc_input, mask=slf_attn_mask)
|
159 |
+
enc_output = self.pos_ffn(enc_output)
|
160 |
+
return enc_output, enc_slf_attn
|
161 |
+
|
162 |
+
|
163 |
+
class TransformerEncoder(nn.Module):
|
164 |
+
''' A encoder model with self attention mechanism. '''
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,
|
168 |
+
d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False):
|
169 |
+
|
170 |
+
super().__init__()
|
171 |
+
|
172 |
+
# self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
|
173 |
+
if n_position > 0:
|
174 |
+
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
|
175 |
+
else:
|
176 |
+
self.position_enc = lambda x: x
|
177 |
+
self.dropout = nn.Dropout(p=dropout)
|
178 |
+
self.layer_stack = nn.ModuleList([
|
179 |
+
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
|
180 |
+
for _ in range(n_layers)])
|
181 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
182 |
+
self.scale_emb = scale_emb
|
183 |
+
self.d_model = d_model
|
184 |
+
|
185 |
+
def forward(self, src_seq, src_mask, return_attns=False):
|
186 |
+
|
187 |
+
enc_slf_attn_list = []
|
188 |
+
|
189 |
+
# -- Forward
|
190 |
+
# enc_output = self.src_word_emb(src_seq)
|
191 |
+
enc_output = src_seq
|
192 |
+
if self.scale_emb:
|
193 |
+
enc_output *= self.d_model ** 0.5
|
194 |
+
enc_output = self.dropout(self.position_enc(enc_output))
|
195 |
+
enc_output = self.layer_norm(enc_output)
|
196 |
+
|
197 |
+
for enc_layer in self.layer_stack:
|
198 |
+
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
|
199 |
+
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
|
200 |
+
|
201 |
+
if return_attns:
|
202 |
+
return enc_output, enc_slf_attn_list
|
203 |
+
return enc_output
|
204 |
+
|
205 |
+
|
206 |
+
# CleanUNet architecture
|
207 |
+
|
208 |
+
|
209 |
+
def padding(x, D, K, S):
|
210 |
+
"""padding zeroes to x so that denoised audio has the same length"""
|
211 |
+
|
212 |
+
L = x.shape[-1]
|
213 |
+
for _ in range(D):
|
214 |
+
if L < K:
|
215 |
+
L = 1
|
216 |
+
else:
|
217 |
+
L = 1 + np.ceil((L - K) / S)
|
218 |
+
|
219 |
+
for _ in range(D):
|
220 |
+
L = (L - 1) * S + K
|
221 |
+
|
222 |
+
L = int(L)
|
223 |
+
x = F.pad(x, (0, L - x.shape[-1]))
|
224 |
+
return x
|
225 |
+
|
226 |
+
|
227 |
+
class CleanUNet(nn.Module):
|
228 |
+
""" CleanUNet architecture. """
|
229 |
+
|
230 |
+
def __init__(self, channels_input=1, channels_output=1,
|
231 |
+
channels_H=64, max_H=768,
|
232 |
+
encoder_n_layers=8, kernel_size=4, stride=2,
|
233 |
+
tsfm_n_layers=3,
|
234 |
+
tsfm_n_head=8,
|
235 |
+
tsfm_d_model=512,
|
236 |
+
tsfm_d_inner=2048):
|
237 |
+
|
238 |
+
"""
|
239 |
+
Parameters:
|
240 |
+
channels_input (int): input channels
|
241 |
+
channels_output (int): output channels
|
242 |
+
channels_H (int): middle channels H that controls capacity
|
243 |
+
max_H (int): maximum H
|
244 |
+
encoder_n_layers (int): number of encoder/decoder layers D
|
245 |
+
kernel_size (int): kernel size K
|
246 |
+
stride (int): stride S
|
247 |
+
tsfm_n_layers (int): number of self attention blocks N
|
248 |
+
tsfm_n_head (int): number of heads in each self attention block
|
249 |
+
tsfm_d_model (int): d_model of self attention
|
250 |
+
tsfm_d_inner (int): d_inner of self attention
|
251 |
+
"""
|
252 |
+
|
253 |
+
super(CleanUNet, self).__init__()
|
254 |
+
|
255 |
+
self.channels_input = channels_input
|
256 |
+
self.channels_output = channels_output
|
257 |
+
self.channels_H = channels_H
|
258 |
+
self.max_H = max_H
|
259 |
+
self.encoder_n_layers = encoder_n_layers
|
260 |
+
self.kernel_size = kernel_size
|
261 |
+
self.stride = stride
|
262 |
+
|
263 |
+
self.tsfm_n_layers = tsfm_n_layers
|
264 |
+
self.tsfm_n_head = tsfm_n_head
|
265 |
+
self.tsfm_d_model = tsfm_d_model
|
266 |
+
self.tsfm_d_inner = tsfm_d_inner
|
267 |
+
|
268 |
+
# encoder and decoder
|
269 |
+
self.encoder = nn.ModuleList()
|
270 |
+
self.decoder = nn.ModuleList()
|
271 |
+
|
272 |
+
for i in range(encoder_n_layers):
|
273 |
+
self.encoder.append(nn.Sequential(
|
274 |
+
nn.Conv1d(channels_input, channels_H, kernel_size, stride),
|
275 |
+
nn.ReLU(),
|
276 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
277 |
+
nn.GLU(dim=1)
|
278 |
+
))
|
279 |
+
channels_input = channels_H
|
280 |
+
|
281 |
+
if i == 0:
|
282 |
+
# no relu at end
|
283 |
+
self.decoder.append(nn.Sequential(
|
284 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
285 |
+
nn.GLU(dim=1),
|
286 |
+
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride)
|
287 |
+
))
|
288 |
+
else:
|
289 |
+
self.decoder.insert(0, nn.Sequential(
|
290 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
291 |
+
nn.GLU(dim=1),
|
292 |
+
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride),
|
293 |
+
nn.ReLU()
|
294 |
+
))
|
295 |
+
channels_output = channels_H
|
296 |
+
|
297 |
+
# double H but keep below max_H
|
298 |
+
channels_H *= 2
|
299 |
+
channels_H = min(channels_H, max_H)
|
300 |
+
|
301 |
+
# self attention block
|
302 |
+
self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1)
|
303 |
+
self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model,
|
304 |
+
n_layers=tsfm_n_layers,
|
305 |
+
n_head=tsfm_n_head,
|
306 |
+
d_k=tsfm_d_model // tsfm_n_head,
|
307 |
+
d_v=tsfm_d_model // tsfm_n_head,
|
308 |
+
d_model=tsfm_d_model,
|
309 |
+
d_inner=tsfm_d_inner,
|
310 |
+
dropout=0.0,
|
311 |
+
n_position=0,
|
312 |
+
scale_emb=False)
|
313 |
+
self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1)
|
314 |
+
|
315 |
+
# weight scaling initialization
|
316 |
+
for layer in self.modules():
|
317 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
318 |
+
weight_scaling_init(layer)
|
319 |
+
|
320 |
+
def forward(self, noisy_audio):
|
321 |
+
# (B, L) -> (B, C, L)
|
322 |
+
if len(noisy_audio.shape) == 2:
|
323 |
+
noisy_audio = noisy_audio.unsqueeze(1)
|
324 |
+
B, C, L = noisy_audio.shape
|
325 |
+
assert C == 1
|
326 |
+
|
327 |
+
# normalization and padding
|
328 |
+
std = noisy_audio.std(dim=2, keepdim=True) + 1e-3
|
329 |
+
noisy_audio /= std
|
330 |
+
x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride)
|
331 |
+
|
332 |
+
# encoder
|
333 |
+
skip_connections = []
|
334 |
+
for downsampling_block in self.encoder:
|
335 |
+
x = downsampling_block(x)
|
336 |
+
skip_connections.append(x)
|
337 |
+
skip_connections = skip_connections[::-1]
|
338 |
+
|
339 |
+
# attention mask for causal inference; for non-causal, set attn_mask to None
|
340 |
+
len_s = x.shape[-1] # length at bottleneck
|
341 |
+
attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool()
|
342 |
+
|
343 |
+
x = self.tsfm_conv1(x) # C 1024 -> 512
|
344 |
+
x = x.permute(0, 2, 1)
|
345 |
+
x = self.tsfm_encoder(x, src_mask=attn_mask)
|
346 |
+
x = x.permute(0, 2, 1)
|
347 |
+
x = self.tsfm_conv2(x) # C 512 -> 1024
|
348 |
+
|
349 |
+
# decoder
|
350 |
+
for i, upsampling_block in enumerate(self.decoder):
|
351 |
+
skip_i = skip_connections[i]
|
352 |
+
x += skip_i[:, :, :x.shape[-1]]
|
353 |
+
x = upsampling_block(x)
|
354 |
+
|
355 |
+
x = x[:, :, :L] * std
|
356 |
+
return x
|
357 |
+
|
358 |
+
|
359 |
+
if __name__ == '__main__':
|
360 |
+
import json
|
361 |
+
import argparse
|
362 |
+
import os
|
363 |
+
|
364 |
+
parser = argparse.ArgumentParser()
|
365 |
+
parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json',
|
366 |
+
help='JSON file for configuration')
|
367 |
+
args = parser.parse_args()
|
368 |
+
|
369 |
+
with open(args.config) as f:
|
370 |
+
data = f.read()
|
371 |
+
config = json.loads(data)
|
372 |
+
network_config = config["network_config"]
|
373 |
+
|
374 |
+
model = CleanUNet(**network_config).cuda()
|
375 |
+
from util import print_size
|
376 |
+
print_size(model, keyword="tsfm")
|
377 |
+
|
378 |
+
input_data = torch.ones([4,1,int(4.5*16000)]).cuda()
|
379 |
+
output = model(input_data)
|
380 |
+
print(output.shape)
|
381 |
+
|
382 |
+
y = torch.rand([4,1,int(4.5*16000)]).cuda()
|
383 |
+
loss = torch.nn.MSELoss()(y, output)
|
384 |
+
loss.backward()
|
385 |
+
print(loss.item())
|
386 |
+
|
requirements.txt
ADDED
File without changes
|
util.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import functools
|
4 |
+
import numpy as np
|
5 |
+
from math import cos, pi, floor, sin
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from stft_loss import MultiResolutionSTFTLoss
|
13 |
+
|
14 |
+
|
15 |
+
def flatten(v):
|
16 |
+
return [x for y in v for x in y]
|
17 |
+
|
18 |
+
|
19 |
+
def rescale(x):
|
20 |
+
return (x - x.min()) / (x.max() - x.min())
|
21 |
+
|
22 |
+
|
23 |
+
def find_max_epoch(path):
|
24 |
+
"""
|
25 |
+
Find latest checkpoint
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
maximum iteration, -1 if there is no (valid) checkpoint
|
29 |
+
"""
|
30 |
+
|
31 |
+
files = os.listdir(path)
|
32 |
+
epoch = -1
|
33 |
+
for f in files:
|
34 |
+
if len(f) <= 4:
|
35 |
+
continue
|
36 |
+
if f[-4:] == '.pkl':
|
37 |
+
number = f[:-4]
|
38 |
+
try:
|
39 |
+
epoch = max(epoch, int(number))
|
40 |
+
except:
|
41 |
+
continue
|
42 |
+
return epoch
|
43 |
+
|
44 |
+
|
45 |
+
def print_size(net, keyword=None):
|
46 |
+
"""
|
47 |
+
Print the number of parameters of a network
|
48 |
+
"""
|
49 |
+
|
50 |
+
if net is not None and isinstance(net, torch.nn.Module):
|
51 |
+
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
|
52 |
+
params = sum([np.prod(p.size()) for p in module_parameters])
|
53 |
+
|
54 |
+
print("{} Parameters: {:.6f}M".format(
|
55 |
+
net.__class__.__name__, params / 1e6), flush=True, end="; ")
|
56 |
+
|
57 |
+
if keyword is not None:
|
58 |
+
keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name]
|
59 |
+
params = sum([np.prod(p.size()) for p in keyword_parameters])
|
60 |
+
print("{} Parameters: {:.6f}M".format(
|
61 |
+
keyword, params / 1e6), flush=True, end="; ")
|
62 |
+
|
63 |
+
print(" ")
|
64 |
+
|
65 |
+
|
66 |
+
####################### lr scheduler: Linear Warmup then Cosine Decay #############################
|
67 |
+
|
68 |
+
# Adapted from https://github.com/rosinality/vq-vae-2-pytorch
|
69 |
+
|
70 |
+
# Original Copyright 2019 Kim Seonghyeon
|
71 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
72 |
+
|
73 |
+
|
74 |
+
def anneal_linear(start, end, proportion):
|
75 |
+
return start + proportion * (end - start)
|
76 |
+
|
77 |
+
|
78 |
+
def anneal_cosine(start, end, proportion):
|
79 |
+
cos_val = cos(pi * proportion) + 1
|
80 |
+
return end + (start - end) / 2 * cos_val
|
81 |
+
|
82 |
+
|
83 |
+
class Phase:
|
84 |
+
def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
|
85 |
+
self.start, self.end = start, end
|
86 |
+
self.n_iter = n_iter
|
87 |
+
self.anneal_fn = anneal_fn
|
88 |
+
self.n = cur_iter
|
89 |
+
|
90 |
+
def step(self):
|
91 |
+
self.n += 1
|
92 |
+
|
93 |
+
return self.anneal_fn(self.start, self.end, self.n / self.n_iter)
|
94 |
+
|
95 |
+
def reset(self):
|
96 |
+
self.n = 0
|
97 |
+
|
98 |
+
@property
|
99 |
+
def is_done(self):
|
100 |
+
return self.n >= self.n_iter
|
101 |
+
|
102 |
+
|
103 |
+
class LinearWarmupCosineDecay:
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
optimizer,
|
107 |
+
lr_max,
|
108 |
+
n_iter,
|
109 |
+
iteration=0,
|
110 |
+
divider=25,
|
111 |
+
warmup_proportion=0.3,
|
112 |
+
phase=('linear', 'cosine'),
|
113 |
+
):
|
114 |
+
self.optimizer = optimizer
|
115 |
+
|
116 |
+
phase1 = int(n_iter * warmup_proportion)
|
117 |
+
phase2 = n_iter - phase1
|
118 |
+
lr_min = lr_max / divider
|
119 |
+
|
120 |
+
phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}
|
121 |
+
|
122 |
+
cur_iter_phase1 = iteration
|
123 |
+
cur_iter_phase2 = max(0, iteration - phase1)
|
124 |
+
self.lr_phase = [
|
125 |
+
Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
|
126 |
+
Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
|
127 |
+
]
|
128 |
+
|
129 |
+
if iteration < phase1:
|
130 |
+
self.phase = 0
|
131 |
+
else:
|
132 |
+
self.phase = 1
|
133 |
+
|
134 |
+
def step(self):
|
135 |
+
lr = self.lr_phase[self.phase].step()
|
136 |
+
|
137 |
+
for group in self.optimizer.param_groups:
|
138 |
+
group['lr'] = lr
|
139 |
+
|
140 |
+
if self.lr_phase[self.phase].is_done:
|
141 |
+
self.phase += 1
|
142 |
+
|
143 |
+
if self.phase >= len(self.lr_phase):
|
144 |
+
for phase in self.lr_phase:
|
145 |
+
phase.reset()
|
146 |
+
|
147 |
+
self.phase = 0
|
148 |
+
|
149 |
+
return lr
|
150 |
+
|
151 |
+
|
152 |
+
####################### model util #############################
|
153 |
+
|
154 |
+
def std_normal(size):
|
155 |
+
"""
|
156 |
+
Generate the standard Gaussian variable of a certain size
|
157 |
+
"""
|
158 |
+
|
159 |
+
return torch.normal(0, 1, size=size).cuda()
|
160 |
+
|
161 |
+
|
162 |
+
def weight_scaling_init(layer):
|
163 |
+
"""
|
164 |
+
weight rescaling initialization from https://arxiv.org/abs/1911.13254
|
165 |
+
"""
|
166 |
+
w = layer.weight.detach()
|
167 |
+
alpha = 10.0 * w.std()
|
168 |
+
layer.weight.data /= torch.sqrt(alpha)
|
169 |
+
layer.bias.data /= torch.sqrt(alpha)
|
170 |
+
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def sampling(net, noisy_audio):
|
174 |
+
"""
|
175 |
+
Perform denoising (forward) step
|
176 |
+
"""
|
177 |
+
|
178 |
+
return net(noisy_audio)
|
179 |
+
|
180 |
+
|
181 |
+
def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs):
|
182 |
+
"""
|
183 |
+
Loss function in CleanUNet
|
184 |
+
|
185 |
+
Parameters:
|
186 |
+
net: network
|
187 |
+
X: training data pair (clean audio, noisy_audio)
|
188 |
+
ell_p: \ell_p norm (1 or 2) of the AE loss
|
189 |
+
ell_p_lambda: factor of the AE loss
|
190 |
+
stft_lambda: factor of the STFT loss
|
191 |
+
mrstftloss: multi-resolution STFT loss function
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
loss: value of objective function
|
195 |
+
output_dic: values of each component of loss
|
196 |
+
"""
|
197 |
+
|
198 |
+
assert type(X) == tuple and len(X) == 2
|
199 |
+
|
200 |
+
clean_audio, noisy_audio = X
|
201 |
+
B, C, L = clean_audio.shape
|
202 |
+
output_dic = {}
|
203 |
+
loss = 0.0
|
204 |
+
|
205 |
+
# AE loss
|
206 |
+
denoised_audio = net(noisy_audio)
|
207 |
+
|
208 |
+
if ell_p == 2:
|
209 |
+
ae_loss = nn.MSELoss()(denoised_audio, clean_audio)
|
210 |
+
elif ell_p == 1:
|
211 |
+
ae_loss = F.l1_loss(denoised_audio, clean_audio)
|
212 |
+
else:
|
213 |
+
raise NotImplementedError
|
214 |
+
loss += ae_loss * ell_p_lambda
|
215 |
+
output_dic["reconstruct"] = ae_loss.data * ell_p_lambda
|
216 |
+
|
217 |
+
if stft_lambda > 0:
|
218 |
+
sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1))
|
219 |
+
loss += (sc_loss + mag_loss) * stft_lambda
|
220 |
+
output_dic["stft_sc"] = sc_loss.data * stft_lambda
|
221 |
+
output_dic["stft_mag"] = mag_loss.data * stft_lambda
|
222 |
+
|
223 |
+
return loss, output_dic
|
224 |
+
|