Spaces:
Runtime error
Runtime error
Fix
Browse files
app.py
CHANGED
@@ -15,11 +15,15 @@ np.random.seed(0)
|
|
15 |
from util import print_size, sampling
|
16 |
from network import CleanUNet
|
17 |
import torchaudio
|
|
|
|
|
|
|
18 |
|
19 |
def load_simple(filename):
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
CONFIG = "configs/DNS-large-full.json"
|
25 |
CHECKPOINT = "./exp/DNS-large-high/checkpoint/pretrained.pkl"
|
@@ -65,24 +69,16 @@ def denoise(filename, ckpt_path = CHECKPOINT, out = "out.wav"):
|
|
65 |
net.eval()
|
66 |
|
67 |
# inference
|
68 |
-
batch_size = 1000000
|
69 |
noisy_audio = load_simple(filename)
|
70 |
-
LENGTH = len(noisy_audio[0].squeeze())
|
71 |
-
noisy_audio = torch.chunk(noisy_audio, LENGTH // batch_size + 1, dim=1)
|
72 |
-
all_audio = []
|
73 |
|
74 |
for batch in tqdm(noisy_audio):
|
75 |
with torch.no_grad():
|
76 |
generated_audio = sampling(net, batch)
|
77 |
-
generated_audio = generated_audio.cpu()
|
78 |
-
|
79 |
-
|
80 |
-
all_audio = np.concatenate(all_audio, axis=0)
|
81 |
-
sf.write(out, np.ravel(all_audio.squeeze()), 32000)
|
82 |
|
83 |
return out
|
84 |
|
85 |
-
|
86 |
audio = gr.inputs.Audio(label = "Audio to denoise", type = 'filepath')
|
87 |
inputs = [audio]
|
88 |
outputs = gr.outputs.Audio(label = "Denoised audio", type = 'filepath')
|
|
|
15 |
from util import print_size, sampling
|
16 |
from network import CleanUNet
|
17 |
import torchaudio
|
18 |
+
import torchaudio.transforms as T
|
19 |
+
|
20 |
+
SAMPLE_RATE = 22050
|
21 |
|
22 |
def load_simple(filename):
|
23 |
+
wav, sr = torchaudio.load(filename)
|
24 |
+
resampler = T.Resample(sr, SAMPLE_RATE, dtype=wav.dtype)
|
25 |
+
resampled_wav = resampler(audio)
|
26 |
+
return resampled_wav
|
27 |
|
28 |
CONFIG = "configs/DNS-large-full.json"
|
29 |
CHECKPOINT = "./exp/DNS-large-high/checkpoint/pretrained.pkl"
|
|
|
69 |
net.eval()
|
70 |
|
71 |
# inference
|
|
|
72 |
noisy_audio = load_simple(filename)
|
|
|
|
|
|
|
73 |
|
74 |
for batch in tqdm(noisy_audio):
|
75 |
with torch.no_grad():
|
76 |
generated_audio = sampling(net, batch)
|
77 |
+
generated_audio = generated_audio.cpu()
|
78 |
+
sf.write(out, np.ravel(generated_audio.squeeze()), SAMPLE_RATE)
|
|
|
|
|
|
|
79 |
|
80 |
return out
|
81 |
|
|
|
82 |
audio = gr.inputs.Audio(label = "Audio to denoise", type = 'filepath')
|
83 |
inputs = [audio]
|
84 |
outputs = gr.outputs.Audio(label = "Denoised audio", type = 'filepath')
|