File size: 8,154 Bytes
0914710
 
 
 
 
 
 
 
 
 
101b762
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe90c44
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5350122
0914710
 
 
 
 
 
 
 
 
5350122
 
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
101b762
0914710
 
101b762
 
 
 
 
0914710
 
 
 
 
 
 
 
 
 
5350122
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101b762
0914710
 
 
 
101b762
0914710
 
101b762
0914710
 
 
 
101b762
0914710
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import json
import uuid

import uvicorn
from fastapi import FastAPI, HTTPException, Request, status
from fastapi.exceptions import RequestValidationError
from fastapi.responses import FileResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from pydantic import ValidationError

from samgis import PROJECT_ROOT_FOLDER, WORKDIR
from samgis.utilities.type_hints import ApiRequestBody, StringPromptApiRequestBody
from samgis_core.utilities.fastapi_logger import setup_logging


app_logger = setup_logging(debug=True)
app = FastAPI()


@app.middleware("http")
async def request_middleware(request, call_next):
    request_id = str(uuid.uuid4())
    with app_logger.contextualize(request_id=request_id):
        app_logger.info("Request started")

        try:
            response = await call_next(request)

        except Exception as ex:
            app_logger.error(f"Request failed: {ex}")
            response = JSONResponse(content={"success": False}, status_code=500)

        finally:
            response.headers["X-Request-ID"] = request_id
            app_logger.info("Request ended")

        return response


@app.post("/post_test_dictlist")
def post_test_dictlist2(request_input: ApiRequestBody) -> JSONResponse:
    from samgis.io.wrappers_helpers import get_parsed_bbox_points_with_dictlist_prompt

    request_body = get_parsed_bbox_points_with_dictlist_prompt(request_input)
    app_logger.info(f"request_body:{request_body}.")
    return JSONResponse(
        status_code=200,
        content=request_body
    )


@app.get("/health")
async def health() -> JSONResponse:
    from samgis.__version__ import __version__ as version
    from samgis_core.__version__ import __version__ as version_core

    app_logger.info(f"still alive, version:{version}, core version:{version_core}.")
    return JSONResponse(status_code=200, content={"msg": "still alive..."})


@app.post("/post_test_string")
def post_test_string(request_input: StringPromptApiRequestBody) -> JSONResponse:
    from lisa_on_cuda.utils import app_helpers
    from samgis.io.wrappers_helpers import get_parsed_bbox_points_with_string_prompt

    request_body = get_parsed_bbox_points_with_string_prompt(request_input)
    app_logger.info(f"request_body:{request_body}.")
    custom_args = app_helpers.parse_args([])
    request_body["content"] = {**request_body, "precision": str(custom_args.precision)}
    return JSONResponse(
        status_code=200,
        content=request_body
    )


@app.post("/infer_lisa")
def infer_lisa(request_input: StringPromptApiRequestBody) -> JSONResponse:
    from samgis.prediction_api import lisa
    from samgis.io.wrappers_helpers import get_parsed_bbox_points_with_string_prompt

    app_logger.info("starting lisa inference request...")

    try:
        import time

        time_start_run = time.time()
        body_request = get_parsed_bbox_points_with_string_prompt(request_input)
        app_logger.info(f"lisa body_request:{body_request}.")
        app_logger.info(f"lisa module:{lisa}.")
        try:
            output = lisa.lisa_predict(
                bbox=body_request["bbox"], prompt=body_request["prompt"], zoom=body_request["zoom"],
                source=body_request["source"]
            )
            duration_run = time.time() - time_start_run
            app_logger.info(f"duration_run:{duration_run}.")
            body = {
                "duration_run": duration_run,
                "output": output
            }
            return JSONResponse(status_code=200, content={"body": json.dumps(body)})
        except Exception as inference_exception:
            import subprocess
            project_root_folder_content = subprocess.run(
                f"ls -l {PROJECT_ROOT_FOLDER}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE
            )
            app_logger.error(f"project_root folder 'ls -l' command output: {project_root_folder_content.stdout}.")
            workdir_folder_content = subprocess.run(
                f"ls -l {WORKDIR}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE
            )
            app_logger.error(f"workdir folder 'ls -l' command output: {workdir_folder_content.stdout}.")
            app_logger.error(f"inference error:{inference_exception}.")
            raise HTTPException(
                status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Internal server error on inference")
    except ValidationError as va1:
        app_logger.error(f"validation error: {str(va1)}.")
        raise ValidationError("Unprocessable Entity")


@app.post("/infer_samgis")
def infer_samgis(request_input: ApiRequestBody) -> JSONResponse:
    from samgis.prediction_api import predictors
    from samgis.io.wrappers_helpers import get_parsed_bbox_points_with_dictlist_prompt

    app_logger.info("starting samgis inference request...")

    try:
        import time

        time_start_run = time.time()
        body_request = get_parsed_bbox_points_with_dictlist_prompt(request_input)
        app_logger.info(f"body_request:{body_request}.")
        try:
            output = predictors.samexporter_predict(
                bbox=body_request["bbox"], prompt=body_request["prompt"], zoom=body_request["zoom"],
                source=body_request["source"]
            )
            duration_run = time.time() - time_start_run
            app_logger.info(f"duration_run:{duration_run}.")
            body = {
                "duration_run": duration_run,
                "output": output
            }
            return JSONResponse(status_code=200, content={"body": json.dumps(body)})
        except Exception as inference_exception:
            import subprocess
            home_content = subprocess.run(
                "ls -l /var/task", shell=True, universal_newlines=True, stdout=subprocess.PIPE
            )
            app_logger.error(f"/home/user ls -l: {home_content.stdout}.")
            app_logger.error(f"inference error:{inference_exception}.")
            raise HTTPException(
                status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Internal server error on inference")
    except ValidationError as va1:
        app_logger.error(f"validation error: {str(va1)}.")
        raise ValidationError("Unprocessable Entity")


@app.exception_handler(RequestValidationError)
async def request_validation_exception_handler(request: Request, exc: RequestValidationError) -> JSONResponse:
    app_logger.error(f"exception errors: {exc.errors()}.")
    app_logger.error(f"exception body: {exc.body}.")
    headers = request.headers.items()
    app_logger.error(f'request header: {dict(headers)}.')
    params = request.query_params.items()
    app_logger.error(f'request query params: {dict(params)}.')
    return JSONResponse(
        status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
        content={"msg": "Error - Unprocessable Entity"}
    )


@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException) -> JSONResponse:
    app_logger.error(f"exception: {str(exc)}.")
    headers = request.headers.items()
    app_logger.error(f'request header: {dict(headers)}.')
    params = request.query_params.items()
    app_logger.error(f'request query params: {dict(params)}.')
    return JSONResponse(
        status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
        content={"msg": "Error - Internal Server Error"}
    )


# important: the index() function and the app.mount MUST be at the end
app.mount("/lisa", StaticFiles(directory=WORKDIR / "static" / "dist", html=True), name="lisa")


@app.get("/lisa")
async def lisa() -> FileResponse:
    return FileResponse(path=WORKDIR / "static" / "dist" / "lisa.html", media_type="text/html")


app.mount("/", StaticFiles(directory=WORKDIR / "static" / "dist", html=True), name="static")


@app.get("/")
async def index() -> FileResponse:
    return FileResponse(path=WORKDIR / "static" / "dist" / "index.html", media_type="text/html")


if __name__ == '__main__':
    try:
        uvicorn.run(host="0.0.0.0", port=7860, app=app)
    except Exception as e:
        app_logger.error("e:", e)
        raise e