File size: 10,963 Bytes
0914710
 
 
 
fcb8c81
 
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb8c81
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""helpers for computer vision duties"""
import numpy as np
from numpy import ndarray, bitwise_not

from samgis_lisa_on_cuda import app_logger
from samgis_lisa_on_cuda.utilities.type_hints import XYZTerrainProvidersNames


def get_nextzen_terrain_rgb_formula(red: ndarray, green: ndarray, blue: ndarray) -> ndarray:
    """
    Compute a 32-bits 2d digital elevation model from a nextzen 'terrarium' (terrain-rgb) raster.
    'Terrarium' format PNG tiles contain raw elevation data in meters, in Mercator projection (EPSG:3857).
    All values are positive with a 32,768 offset, split into the red, green, and blue channels,
    with 16 bits of integer and 8 bits of fraction. To decode:

        (red * 256 + green + blue / 256) - 32768

    More details on https://www.mapzen.com/blog/elevation/

    Args:
        red: red-valued channel image array
        green: green-valued channel image array
        blue: blue-valued channel image array

    Returns:
        ndarray: nextzen 'terrarium' 2d digital elevation model raster at 32 bits

    """
    return (red * 256 + green + blue / 256) - 32768


def get_mapbox__terrain_rgb_formula(red: ndarray, green: ndarray, blue: ndarray) -> ndarray:
    return ((red * 256 * 256 + green * 256 + blue) * 0.1) - 10000


providers_terrain_rgb_formulas = {
    XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME: get_mapbox__terrain_rgb_formula,
    XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME: get_nextzen_terrain_rgb_formula
}


def _get_2d_array_from_3d(arr: ndarray) -> ndarray:
    return arr.reshape(arr.shape[0], arr.shape[1])


def _channel_split(arr: ndarray) -> list[ndarray]:
    from numpy import dsplit

    return dsplit(arr, arr.shape[-1])


def get_raster_terrain_rgb_like(arr: ndarray, xyz_provider_name, nan_value_int: int = -12000):
    """
    Compute a 32-bits 2d digital elevation model from a terrain-rgb raster.

    Args:
        arr: rgb raster
        xyz_provider_name: xyz provider
        nan_value_int: threshold int value to replace NaN

    Returns:
        ndarray: 2d digital elevation model raster at 32 bits
    """
    red, green, blue = _channel_split(arr)
    dem_rgb = providers_terrain_rgb_formulas[xyz_provider_name](red, green, blue)
    output = _get_2d_array_from_3d(dem_rgb)
    output[output < nan_value_int] = np.NaN
    return output


def get_rgb_prediction_image(raster_cropped: ndarray, slope_cellsize: int, invert_image: bool = True) -> ndarray:
    """
    Return an RGB image from input numpy array
    
    Args:
        raster_cropped: input numpy array
        slope_cellsize: window size to calculate slope and curvature (1st and 2nd degree array derivative)
        invert_image: 

    Returns:
        tuple of str: image filename, image path (with filename)
    """
    from samgis_lisa_on_cuda.utilities.constants import CHANNEL_EXAGGERATIONS_LIST

    try:
        slope, curvature = get_slope_curvature(raster_cropped, slope_cellsize=slope_cellsize)

        channel0 = raster_cropped
        channel1 = normalize_array_list(
            [raster_cropped, slope, curvature], CHANNEL_EXAGGERATIONS_LIST, title="channel1_normlist")
        channel2 = curvature

        return get_rgb_image(channel0, channel1, channel2, invert_image=invert_image)
    except ValueError as ve_get_rgb_prediction_image:
        msg = f"ve_get_rgb_prediction_image:{ve_get_rgb_prediction_image}."
        app_logger.error(msg)
        raise ve_get_rgb_prediction_image


def get_rgb_image(arr_channel0: ndarray, arr_channel1: ndarray, arr_channel2: ndarray,
                  invert_image: bool = True) -> ndarray:
    """
    Return an RGB image from input R,G,B channel arrays

    Args:
        arr_channel0: channel image 0
        arr_channel1: channel image 1
        arr_channel2: channel image 2
        invert_image: invert the RGB image channel order

    Returns:
        ndarray: RGB image

    """
    try:
        # RED curvature, GREEN slope, BLUE dem, invert_image=True
        if len(arr_channel0.shape) != 2:
            msg = f"arr_size, wrong type:{type(arr_channel0)} or arr_size:{arr_channel0.shape}."
            app_logger.error(msg)
            raise ValueError(msg)
        data_rgb = np.zeros((arr_channel0.shape[0], arr_channel0.shape[1], 3), dtype=np.uint8)
        app_logger.debug(f"arr_container data_rgb, type:{type(data_rgb)}, arr_shape:{data_rgb.shape}.")
        data_rgb[:, :, 0] = normalize_array(
            arr_channel0.astype(float), high=1, norm_type="float", title="RGB:channel0") * 64
        data_rgb[:, :, 1] = normalize_array(
            arr_channel1.astype(float), high=1, norm_type="float", title="RGB:channel1") * 128
        data_rgb[:, :, 2] = normalize_array(
            arr_channel2.astype(float), high=1, norm_type="float", title="RGB:channel2") * 192
        if invert_image:
            app_logger.debug(f"data_rgb:{type(data_rgb)}, {data_rgb.dtype}.")
            data_rgb = bitwise_not(data_rgb)
        return data_rgb
    except ValueError as ve_get_rgb_image:
        msg = f"ve_get_rgb_image:{ve_get_rgb_image}."
        app_logger.error(msg)
        raise ve_get_rgb_image


def get_slope_curvature(dem: ndarray, slope_cellsize: int, title: str = "") -> tuple[ndarray, ndarray]:
    """
    Return a tuple of two numpy arrays representing slope and curvature (1st grade derivative and 2nd grade derivative)

    Args:
        dem: input numpy array
        slope_cellsize: window size to calculate slope and curvature
        title: array name

    Returns:
        tuple of ndarrays: slope image, curvature image

    """

    app_logger.info(f"dem shape:{dem.shape}, slope_cellsize:{slope_cellsize}.")

    try:
        dem = dem.astype(float)
        app_logger.debug("get_slope_curvature:: start")
        slope = calculate_slope(dem, slope_cellsize)
        app_logger.debug("get_slope_curvature:: created slope raster")
        s2c = calculate_slope(slope, slope_cellsize)
        curvature = normalize_array(s2c, norm_type="float", title=f"SC:curvature_{title}")
        app_logger.debug("get_slope_curvature:: created curvature raster")

        return slope, curvature
    except ValueError as ve_get_slope_curvature:
        msg = f"ve_get_slope_curvature:{ve_get_slope_curvature}."
        app_logger.error(msg)
        raise ve_get_slope_curvature


def calculate_slope(dem_array: ndarray, cell_size: int, calctype: str = "degree") -> ndarray:
    """
    Return a numpy array representing slope (1st grade derivative)

    Args:
        dem_array: input numpy array
        cell_size: window size to calculate slope
        calctype: calculus type

    Returns:
        ndarray: slope image

    """

    try:
        gradx, grady = np.gradient(dem_array, cell_size)
        dem_slope = np.sqrt(gradx ** 2 + grady ** 2)
        if calctype == "degree":
            dem_slope = np.degrees(np.arctan(dem_slope))
        app_logger.debug(f"extracted slope with calctype:{calctype}.")
        return dem_slope
    except ValueError as ve_calculate_slope:
        msg = f"ve_calculate_slope:{ve_calculate_slope}."
        app_logger.error(msg)
        raise ve_calculate_slope


def normalize_array(arr: ndarray, high: int = 255, norm_type: str = "float", invert: bool = False, title: str = "") -> ndarray:
    """
    Return normalized numpy array between 0 and 'high' value. Default normalization type is int
    
    Args:
        arr: input numpy array
        high: max value to use for normalization
        norm_type: type of normalization: could be 'float' or 'int'
        invert: bool to choose if invert the normalized numpy array
        title: array title name

    Returns:
        ndarray: normalized numpy array

    """
    np.seterr("raise")

    h_min_arr = np.nanmin(arr)
    h_arr_max = np.nanmax(arr)
    try:
        h_diff = h_arr_max - h_min_arr
        app_logger.debug(
            f"normalize_array:: '{title}',h_min_arr:{h_min_arr},h_arr_max:{h_arr_max},h_diff:{h_diff}, dtype:{arr.dtype}.")
    except Exception as e_h_diff:
        app_logger.error(f"e_h_diff:{e_h_diff}.")
        raise ValueError(e_h_diff)

    if check_empty_array(arr, high) or check_empty_array(arr, h_diff):
        msg_ve = f"normalize_array::empty array '{title}',h_min_arr:{h_min_arr},h_arr_max:{h_arr_max},h_diff:{h_diff}, dtype:{arr.dtype}."
        app_logger.error(msg_ve)
        raise ValueError(msg_ve)
    try:
        normalized = high * (arr - h_min_arr) / h_diff
        normalized = np.nanmax(normalized) - normalized if invert else normalized
        return normalized.astype(int) if norm_type == "int" else normalized
    except FloatingPointError as fe:
        msg = f"normalize_array::{title}:h_arr_max:{h_arr_max},h_min_arr:{h_min_arr},fe:{fe}."
        app_logger.error(msg)
        raise ValueError(msg)


def normalize_array_list(arr_list: list[ndarray], exaggerations_list: list[float] = None, title: str = "") -> ndarray:
    """
    Return a normalized numpy array from a list of numpy array and an optional list of exaggeration values.
    
    Args:
        arr_list: list of array to use for normalization
        exaggerations_list: list of exaggeration values
        title: array title name

    Returns:
        ndarray: normalized numpy array

    """

    if not arr_list:
        msg = f"input list can't be empty:{arr_list}."
        app_logger.error(msg)
        raise ValueError(msg)
    if exaggerations_list is None:
        exaggerations_list = list(np.ones(len(arr_list)))
    arr_tmp = np.zeros(arr_list[0].shape)
    for a, exaggeration in zip(arr_list, exaggerations_list):
        app_logger.debug(f"normalize_array_list::exaggeration:{exaggeration}.")
        arr_tmp += normalize_array(a, norm_type="float", title=f"ARRLIST:{title}.") * exaggeration
    return arr_tmp / len(arr_list)


def check_empty_array(arr: ndarray, val: float) -> bool:
    """
    Return True if the input numpy array is empy. Check if
        - all values are all the same value (0, 1 or given 'val' input float value)
        - all values that are not NaN are a given 'val' float value

    Args:
        arr: input numpy array
        val: value to use for check if array is empty

    Returns:
        bool: True if the input numpy array is empty, False otherwise

    """

    arr_check5_tmp = np.copy(arr)
    arr_size = arr.shape[0]
    arr_check3 = np.ones((arr_size, arr_size))
    check1 = np.array_equal(arr, arr_check3)
    check2 = np.array_equal(arr, np.zeros((arr_size, arr_size)))
    arr_check3 *= val
    check3 = np.array_equal(arr, arr_check3)
    arr[np.isnan(arr)] = 0
    check4 = np.array_equal(arr, np.zeros((arr_size, arr_size)))
    arr_check5 = np.ones((arr_size, arr_size)) * val
    arr_check5_tmp[np.isnan(arr_check5_tmp)] = val
    check5 = np.array_equal(arr_check5_tmp, arr_check5)
    app_logger.debug(f"array checks:{check1}, {check2}, {check3}, {check4}, {check5}.")
    return check1 or check2 or check3 or check4 or check5