Spaces:
Sleeping
Sleeping
File size: 26,156 Bytes
669c2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import torch
import torch.nn as nn
from torch.nn import functional as F
from nets.smpler_x import PositionNet, HandRotationNet, FaceRegressor, BoxNet, HandRoI, BodyRotationNet
from nets.loss import CoordLoss, ParamLoss, CELoss
from utils.human_models import smpl_x
from utils.transforms import rot6d_to_axis_angle, restore_bbox
from config import cfg
import math
import copy
from mmpose.models import build_posenet
from mmcv import Config
class Model(nn.Module):
def __init__(self, encoder, body_position_net, body_rotation_net, box_net, hand_position_net, hand_roi_net,
hand_rotation_net, face_regressor):
super(Model, self).__init__()
# body
self.encoder = encoder
self.body_position_net = body_position_net
self.body_regressor = body_rotation_net
self.box_net = box_net
# hand
self.hand_roi_net = hand_roi_net
self.hand_position_net = hand_position_net
self.hand_regressor = hand_rotation_net
# face
self.face_regressor = face_regressor
self.smplx_layer = copy.deepcopy(smpl_x.layer['neutral']).to(cfg.device)
self.coord_loss = CoordLoss()
self.param_loss = ParamLoss()
self.ce_loss = CELoss()
self.body_num_joints = len(smpl_x.pos_joint_part['body'])
self.hand_joint_num = len(smpl_x.pos_joint_part['rhand'])
self.neck = [self.box_net, self.hand_roi_net]
self.head = [self.body_position_net, self.body_regressor,
self.hand_position_net, self.hand_regressor,
self.face_regressor]
self.trainable_modules = [self.encoder, self.body_position_net, self.body_regressor,
self.box_net, self.hand_position_net,
self.hand_roi_net, self.hand_regressor, self.face_regressor]
self.special_trainable_modules = []
# backbone:
param_bb = sum(p.numel() for p in self.encoder.parameters() if p.requires_grad)
# neck
param_neck = 0
for module in self.neck:
param_neck += sum(p.numel() for p in module.parameters() if p.requires_grad)
# head
param_head = 0
for module in self.head:
param_head += sum(p.numel() for p in module.parameters() if p.requires_grad)
param_net = param_bb + param_neck + param_head
# print('#parameters:')
# print(f'{param_bb}, {param_neck}, {param_head}, {param_net}')
def get_camera_trans(self, cam_param):
# camera translation
t_xy = cam_param[:, :2]
gamma = torch.sigmoid(cam_param[:, 2]) # apply sigmoid to make it positive
k_value = torch.FloatTensor([math.sqrt(cfg.focal[0] * cfg.focal[1] * cfg.camera_3d_size * cfg.camera_3d_size / (
cfg.input_body_shape[0] * cfg.input_body_shape[1]))]).to(cfg.device).view(-1)
t_z = k_value * gamma
cam_trans = torch.cat((t_xy, t_z[:, None]), 1)
return cam_trans
def get_coord(self, root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose, shape, expr, cam_trans, mode):
batch_size = root_pose.shape[0]
zero_pose = torch.zeros((1, 3)).float().to(cfg.device).repeat(batch_size, 1) # eye poses
output = self.smplx_layer(betas=shape, body_pose=body_pose, global_orient=root_pose, right_hand_pose=rhand_pose,
left_hand_pose=lhand_pose, jaw_pose=jaw_pose, leye_pose=zero_pose,
reye_pose=zero_pose, expression=expr)
# camera-centered 3D coordinate
mesh_cam = output.vertices
if mode == 'test' and cfg.testset == 'AGORA': # use 144 joints for AGORA evaluation
joint_cam = output.joints
else:
joint_cam = output.joints[:, smpl_x.joint_idx, :]
# project 3D coordinates to 2D space
if mode == 'train' and len(cfg.trainset_3d) == 1 and cfg.trainset_3d[0] == 'AGORA' and len(
cfg.trainset_2d) == 0: # prevent gradients from backpropagating to SMPLX paraemter regression module
x = (joint_cam[:, :, 0].detach() + cam_trans[:, None, 0]) / (
joint_cam[:, :, 2].detach() + cam_trans[:, None, 2] + 1e-4) * cfg.focal[0] + cfg.princpt[0]
y = (joint_cam[:, :, 1].detach() + cam_trans[:, None, 1]) / (
joint_cam[:, :, 2].detach() + cam_trans[:, None, 2] + 1e-4) * cfg.focal[1] + cfg.princpt[1]
else:
x = (joint_cam[:, :, 0] + cam_trans[:, None, 0]) / (joint_cam[:, :, 2] + cam_trans[:, None, 2] + 1e-4) * \
cfg.focal[0] + cfg.princpt[0]
y = (joint_cam[:, :, 1] + cam_trans[:, None, 1]) / (joint_cam[:, :, 2] + cam_trans[:, None, 2] + 1e-4) * \
cfg.focal[1] + cfg.princpt[1]
x = x / cfg.input_body_shape[1] * cfg.output_hm_shape[2]
y = y / cfg.input_body_shape[0] * cfg.output_hm_shape[1]
joint_proj = torch.stack((x, y), 2)
# root-relative 3D coordinates
root_cam = joint_cam[:, smpl_x.root_joint_idx, None, :]
joint_cam = joint_cam - root_cam
mesh_cam = mesh_cam + cam_trans[:, None, :] # for rendering
joint_cam_wo_ra = joint_cam.clone()
# left hand root (left wrist)-relative 3D coordinatese
lhand_idx = smpl_x.joint_part['lhand']
lhand_cam = joint_cam[:, lhand_idx, :]
lwrist_cam = joint_cam[:, smpl_x.lwrist_idx, None, :]
lhand_cam = lhand_cam - lwrist_cam
joint_cam = torch.cat((joint_cam[:, :lhand_idx[0], :], lhand_cam, joint_cam[:, lhand_idx[-1] + 1:, :]), 1)
# right hand root (right wrist)-relative 3D coordinatese
rhand_idx = smpl_x.joint_part['rhand']
rhand_cam = joint_cam[:, rhand_idx, :]
rwrist_cam = joint_cam[:, smpl_x.rwrist_idx, None, :]
rhand_cam = rhand_cam - rwrist_cam
joint_cam = torch.cat((joint_cam[:, :rhand_idx[0], :], rhand_cam, joint_cam[:, rhand_idx[-1] + 1:, :]), 1)
# face root (neck)-relative 3D coordinates
face_idx = smpl_x.joint_part['face']
face_cam = joint_cam[:, face_idx, :]
neck_cam = joint_cam[:, smpl_x.neck_idx, None, :]
face_cam = face_cam - neck_cam
joint_cam = torch.cat((joint_cam[:, :face_idx[0], :], face_cam, joint_cam[:, face_idx[-1] + 1:, :]), 1)
return joint_proj, joint_cam, joint_cam_wo_ra, mesh_cam
def generate_mesh_gt(self, targets, mode):
if 'smplx_mesh_cam' in targets:
return targets['smplx_mesh_cam']
nums = [3, 63, 45, 45, 3]
accu = []
temp = 0
for num in nums:
temp += num
accu.append(temp)
pose = targets['smplx_pose']
root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose = \
pose[:, :accu[0]], pose[:, accu[0]:accu[1]], pose[:, accu[1]:accu[2]], pose[:, accu[2]:accu[3]], pose[:,
accu[3]:
accu[4]]
# print(lhand_pose)
shape = targets['smplx_shape']
expr = targets['smplx_expr']
cam_trans = targets['smplx_cam_trans']
# final output
joint_proj, joint_cam, joint_cam_wo_ra, mesh_cam = self.get_coord(root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose, shape,
expr, cam_trans, mode)
return mesh_cam
def bbox_split(self, bbox):
# bbox:[bs, 3, 3]
lhand_bbox_center, rhand_bbox_center, face_bbox_center = \
bbox[:, 0, :2], bbox[:, 1, :2], bbox[:, 2, :2]
return lhand_bbox_center, rhand_bbox_center, face_bbox_center
def forward(self, inputs, targets, meta_info, mode):
body_img = F.interpolate(inputs['img'], cfg.input_body_shape)
# 1. Encoder
img_feat, task_tokens = self.encoder(body_img) # task_token:[bs, N, c]
shape_token, cam_token, expr_token, jaw_pose_token, hand_token, body_pose_token = \
task_tokens[:, 0], task_tokens[:, 1], task_tokens[:, 2], task_tokens[:, 3], task_tokens[:, 4:6], task_tokens[:, 6:]
# 2. Body Regressor
body_joint_hm, body_joint_img = self.body_position_net(img_feat)
root_pose, body_pose, shape, cam_param, = self.body_regressor(body_pose_token, shape_token, cam_token, body_joint_img.detach())
root_pose = rot6d_to_axis_angle(root_pose)
body_pose = rot6d_to_axis_angle(body_pose.reshape(-1, 6)).reshape(body_pose.shape[0], -1) # (N, J_R*3)
cam_trans = self.get_camera_trans(cam_param)
# 3. Hand and Face BBox Estimation
lhand_bbox_center, lhand_bbox_size, rhand_bbox_center, rhand_bbox_size, face_bbox_center, face_bbox_size = self.box_net(img_feat, body_joint_hm.detach())
lhand_bbox = restore_bbox(lhand_bbox_center, lhand_bbox_size, cfg.input_hand_shape[1] / cfg.input_hand_shape[0], 2.0).detach() # xyxy in (cfg.input_body_shape[1], cfg.input_body_shape[0]) space
rhand_bbox = restore_bbox(rhand_bbox_center, rhand_bbox_size, cfg.input_hand_shape[1] / cfg.input_hand_shape[0], 2.0).detach() # xyxy in (cfg.input_body_shape[1], cfg.input_body_shape[0]) space
face_bbox = restore_bbox(face_bbox_center, face_bbox_size, cfg.input_face_shape[1] / cfg.input_face_shape[0], 1.5).detach() # xyxy in (cfg.input_body_shape[1], cfg.input_body_shape[0]) space
# 4. Differentiable Feature-level Hand Crop-Upsample
# hand_feat: list, [bsx2, c, cfg.output_hm_shape[1]*scale, cfg.output_hm_shape[2]*scale]
hand_feat = self.hand_roi_net(img_feat, lhand_bbox, rhand_bbox) # hand_feat: flipped left hand + right hand
# 5. Hand/Face Regressor
# hand regressor
_, hand_joint_img = self.hand_position_net(hand_feat) # (2N, J_P, 3)
hand_pose = self.hand_regressor(hand_feat, hand_joint_img.detach())
hand_pose = rot6d_to_axis_angle(hand_pose.reshape(-1, 6)).reshape(hand_feat.shape[0], -1) # (2N, J_R*3)
# restore flipped left hand joint coordinates
batch_size = hand_joint_img.shape[0] // 2
lhand_joint_img = hand_joint_img[:batch_size, :, :]
lhand_joint_img = torch.cat((cfg.output_hand_hm_shape[2] - 1 - lhand_joint_img[:, :, 0:1], lhand_joint_img[:, :, 1:]), 2)
rhand_joint_img = hand_joint_img[batch_size:, :, :]
# restore flipped left hand joint rotations
batch_size = hand_pose.shape[0] // 2
lhand_pose = hand_pose[:batch_size, :].reshape(-1, len(smpl_x.orig_joint_part['lhand']), 3)
lhand_pose = torch.cat((lhand_pose[:, :, 0:1], -lhand_pose[:, :, 1:3]), 2).view(batch_size, -1)
rhand_pose = hand_pose[batch_size:, :]
# hand regressor
expr, jaw_pose = self.face_regressor(expr_token, jaw_pose_token)
jaw_pose = rot6d_to_axis_angle(jaw_pose)
# final output
joint_proj, joint_cam, joint_cam_wo_ra, mesh_cam = self.get_coord(root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose, shape, expr, cam_trans, mode)
pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose), 1)
joint_img = torch.cat((body_joint_img, lhand_joint_img, rhand_joint_img), 1)
if mode == 'test' and 'smplx_pose' in targets:
mesh_pseudo_gt = self.generate_mesh_gt(targets, mode)
if mode == 'train':
# loss functions
loss = {}
smplx_kps_3d_weight = getattr(cfg, 'smplx_kps_3d_weight', 1.0)
smplx_kps_3d_weight = getattr(cfg, 'smplx_kps_weight', smplx_kps_3d_weight) # old config
smplx_kps_2d_weight = getattr(cfg, 'smplx_kps_2d_weight', 1.0)
net_kps_2d_weight = getattr(cfg, 'net_kps_2d_weight', 1.0)
smplx_pose_weight = getattr(cfg, 'smplx_pose_weight', 1.0)
smplx_shape_weight = getattr(cfg, 'smplx_loss_weight', 1.0)
# smplx_orient_weight = getattr(cfg, 'smplx_orient_weight', smplx_pose_weight) # if not specified, use the same weight as pose
# do not supervise root pose if original agora json is used
if getattr(cfg, 'agora_fix_global_orient_transl', False):
# loss['smplx_pose'] = self.param_loss(pose, targets['smplx_pose'], meta_info['smplx_pose_valid'])[:, 3:] * smplx_pose_weight
if hasattr(cfg, 'smplx_orient_weight'):
smplx_orient_weight = getattr(cfg, 'smplx_orient_weight')
loss['smplx_orient'] = self.param_loss(pose, targets['smplx_pose'], meta_info['smplx_pose_valid'])[:, :3] * smplx_orient_weight
loss['smplx_pose'] = self.param_loss(pose, targets['smplx_pose'], meta_info['smplx_pose_valid']) * smplx_pose_weight
else:
loss['smplx_pose'] = self.param_loss(pose, targets['smplx_pose'], meta_info['smplx_pose_valid'])[:, 3:] * smplx_pose_weight
loss['smplx_shape'] = self.param_loss(shape, targets['smplx_shape'],
meta_info['smplx_shape_valid'][:, None]) * smplx_shape_weight
loss['smplx_expr'] = self.param_loss(expr, targets['smplx_expr'], meta_info['smplx_expr_valid'][:, None])
# supervision for keypoints3d wo/ ra
loss['joint_cam'] = self.coord_loss(joint_cam_wo_ra, targets['joint_cam'], meta_info['joint_valid'] * meta_info['is_3D'][:, None, None]) * smplx_kps_3d_weight
# supervision for keypoints3d w/ ra
loss['smplx_joint_cam'] = self.coord_loss(joint_cam, targets['smplx_joint_cam'], meta_info['smplx_joint_valid']) * smplx_kps_3d_weight
if not (meta_info['lhand_bbox_valid'] == 0).all():
loss['lhand_bbox'] = (self.coord_loss(lhand_bbox_center, targets['lhand_bbox_center'], meta_info['lhand_bbox_valid'][:, None]) +
self.coord_loss(lhand_bbox_size, targets['lhand_bbox_size'], meta_info['lhand_bbox_valid'][:, None]))
if not (meta_info['rhand_bbox_valid'] == 0).all():
loss['rhand_bbox'] = (self.coord_loss(rhand_bbox_center, targets['rhand_bbox_center'], meta_info['rhand_bbox_valid'][:, None]) +
self.coord_loss(rhand_bbox_size, targets['rhand_bbox_size'], meta_info['rhand_bbox_valid'][:, None]))
if not (meta_info['face_bbox_valid'] == 0).all():
loss['face_bbox'] = (self.coord_loss(face_bbox_center, targets['face_bbox_center'], meta_info['face_bbox_valid'][:, None]) +
self.coord_loss(face_bbox_size, targets['face_bbox_size'], meta_info['face_bbox_valid'][:, None]))
# if (meta_info['face_bbox_valid'] == 0).all():
# out = {}
targets['original_joint_img'] = targets['joint_img'].clone()
targets['original_smplx_joint_img'] = targets['smplx_joint_img'].clone()
# out['original_joint_proj'] = joint_proj.clone()
if not (meta_info['lhand_bbox_valid'] + meta_info['rhand_bbox_valid'] == 0).all():
# change hand target joint_img and joint_trunc according to hand bbox (cfg.output_hm_shape -> downsampled hand bbox space)
for part_name, bbox in (('lhand', lhand_bbox), ('rhand', rhand_bbox)):
for coord_name, trunc_name in (('joint_img', 'joint_trunc'), ('smplx_joint_img', 'smplx_joint_trunc')):
x = targets[coord_name][:, smpl_x.joint_part[part_name], 0]
y = targets[coord_name][:, smpl_x.joint_part[part_name], 1]
z = targets[coord_name][:, smpl_x.joint_part[part_name], 2]
trunc = meta_info[trunc_name][:, smpl_x.joint_part[part_name], 0]
x -= (bbox[:, None, 0] / cfg.input_body_shape[1] * cfg.output_hm_shape[2])
x *= (cfg.output_hand_hm_shape[2] / (
(bbox[:, None, 2] - bbox[:, None, 0]) / cfg.input_body_shape[1] * cfg.output_hm_shape[
2]))
y -= (bbox[:, None, 1] / cfg.input_body_shape[0] * cfg.output_hm_shape[1])
y *= (cfg.output_hand_hm_shape[1] / (
(bbox[:, None, 3] - bbox[:, None, 1]) / cfg.input_body_shape[0] * cfg.output_hm_shape[
1]))
z *= cfg.output_hand_hm_shape[0] / cfg.output_hm_shape[0]
trunc *= ((x >= 0) * (x < cfg.output_hand_hm_shape[2]) * (y >= 0) * (
y < cfg.output_hand_hm_shape[1]))
coord = torch.stack((x, y, z), 2)
trunc = trunc[:, :, None]
targets[coord_name] = torch.cat((targets[coord_name][:, :smpl_x.joint_part[part_name][0], :], coord,
targets[coord_name][:, smpl_x.joint_part[part_name][-1] + 1:, :]),
1)
meta_info[trunc_name] = torch.cat((meta_info[trunc_name][:, :smpl_x.joint_part[part_name][0], :],
trunc,
meta_info[trunc_name][:, smpl_x.joint_part[part_name][-1] + 1:,
:]), 1)
# change hand projected joint coordinates according to hand bbox (cfg.output_hm_shape -> hand bbox space)
for part_name, bbox in (('lhand', lhand_bbox), ('rhand', rhand_bbox)):
x = joint_proj[:, smpl_x.joint_part[part_name], 0]
y = joint_proj[:, smpl_x.joint_part[part_name], 1]
x -= (bbox[:, None, 0] / cfg.input_body_shape[1] * cfg.output_hm_shape[2])
x *= (cfg.output_hand_hm_shape[2] / (
(bbox[:, None, 2] - bbox[:, None, 0]) / cfg.input_body_shape[1] * cfg.output_hm_shape[2]))
y -= (bbox[:, None, 1] / cfg.input_body_shape[0] * cfg.output_hm_shape[1])
y *= (cfg.output_hand_hm_shape[1] / (
(bbox[:, None, 3] - bbox[:, None, 1]) / cfg.input_body_shape[0] * cfg.output_hm_shape[1]))
coord = torch.stack((x, y), 2)
trans = []
for bid in range(coord.shape[0]):
mask = meta_info['joint_trunc'][bid, smpl_x.joint_part[part_name], 0] == 1
if torch.sum(mask) == 0:
trans.append(torch.zeros((2)).float().to(cfg.device))
else:
trans.append((-coord[bid, mask, :2] + targets['joint_img'][:, smpl_x.joint_part[part_name], :][
bid, mask, :2]).mean(0))
trans = torch.stack(trans)[:, None, :]
coord = coord + trans # global translation alignment
joint_proj = torch.cat((joint_proj[:, :smpl_x.joint_part[part_name][0], :], coord,
joint_proj[:, smpl_x.joint_part[part_name][-1] + 1:, :]), 1)
if not (meta_info['face_bbox_valid'] == 0).all():
# change face projected joint coordinates according to face bbox (cfg.output_hm_shape -> face bbox space)
coord = joint_proj[:, smpl_x.joint_part['face'], :]
trans = []
for bid in range(coord.shape[0]):
mask = meta_info['joint_trunc'][bid, smpl_x.joint_part['face'], 0] == 1
if torch.sum(mask) == 0:
trans.append(torch.zeros((2)).float().to(cfg.device))
else:
trans.append((-coord[bid, mask, :2] + targets['joint_img'][:, smpl_x.joint_part['face'], :][bid,
mask, :2]).mean(0))
trans = torch.stack(trans)[:, None, :]
coord = coord + trans # global translation alignment
joint_proj = torch.cat((joint_proj[:, :smpl_x.joint_part['face'][0], :], coord,
joint_proj[:, smpl_x.joint_part['face'][-1] + 1:, :]), 1)
loss['joint_proj'] = self.coord_loss(joint_proj, targets['joint_img'][:, :, :2], meta_info['joint_trunc']) * smplx_kps_2d_weight
loss['joint_img'] = self.coord_loss(joint_img, smpl_x.reduce_joint_set(targets['joint_img']),
smpl_x.reduce_joint_set(meta_info['joint_trunc']), meta_info['is_3D']) * net_kps_2d_weight
loss['smplx_joint_img'] = self.coord_loss(joint_img, smpl_x.reduce_joint_set(targets['smplx_joint_img']),
smpl_x.reduce_joint_set(meta_info['smplx_joint_trunc'])) * net_kps_2d_weight
return loss
else:
# change hand output joint_img according to hand bbox
for part_name, bbox in (('lhand', lhand_bbox), ('rhand', rhand_bbox)):
joint_img[:, smpl_x.pos_joint_part[part_name], 0] *= (
((bbox[:, None, 2] - bbox[:, None, 0]) / cfg.input_body_shape[1] * cfg.output_hm_shape[2]) /
cfg.output_hand_hm_shape[2])
joint_img[:, smpl_x.pos_joint_part[part_name], 0] += (
bbox[:, None, 0] / cfg.input_body_shape[1] * cfg.output_hm_shape[2])
joint_img[:, smpl_x.pos_joint_part[part_name], 1] *= (
((bbox[:, None, 3] - bbox[:, None, 1]) / cfg.input_body_shape[0] * cfg.output_hm_shape[1]) /
cfg.output_hand_hm_shape[1])
joint_img[:, smpl_x.pos_joint_part[part_name], 1] += (
bbox[:, None, 1] / cfg.input_body_shape[0] * cfg.output_hm_shape[1])
# change input_body_shape to input_img_shape
for bbox in (lhand_bbox, rhand_bbox, face_bbox):
bbox[:, 0] *= cfg.input_img_shape[1] / cfg.input_body_shape[1]
bbox[:, 1] *= cfg.input_img_shape[0] / cfg.input_body_shape[0]
bbox[:, 2] *= cfg.input_img_shape[1] / cfg.input_body_shape[1]
bbox[:, 3] *= cfg.input_img_shape[0] / cfg.input_body_shape[0]
# test output
out = {}
out['img'] = inputs['img']
out['joint_img'] = joint_img
out['smplx_joint_proj'] = joint_proj
out['smplx_mesh_cam'] = mesh_cam
out['smplx_root_pose'] = root_pose
out['smplx_body_pose'] = body_pose
out['smplx_lhand_pose'] = lhand_pose
out['smplx_rhand_pose'] = rhand_pose
out['smplx_jaw_pose'] = jaw_pose
out['smplx_shape'] = shape
out['smplx_expr'] = expr
out['cam_trans'] = cam_trans
out['lhand_bbox'] = lhand_bbox
out['rhand_bbox'] = rhand_bbox
out['face_bbox'] = face_bbox
if 'smplx_shape' in targets:
out['smplx_shape_target'] = targets['smplx_shape']
if 'img_path' in meta_info:
out['img_path'] = meta_info['img_path']
if 'smplx_pose' in targets:
out['smplx_mesh_cam_pseudo_gt'] = mesh_pseudo_gt
if 'smplx_mesh_cam' in targets:
out['smplx_mesh_cam_target'] = targets['smplx_mesh_cam']
if 'smpl_mesh_cam' in targets:
out['smpl_mesh_cam_target'] = targets['smpl_mesh_cam']
if 'bb2img_trans' in meta_info:
out['bb2img_trans'] = meta_info['bb2img_trans']
if 'gt_smplx_transl' in meta_info:
out['gt_smplx_transl'] = meta_info['gt_smplx_transl']
return out
def init_weights(m):
try:
if type(m) == nn.ConvTranspose2d:
nn.init.normal_(m.weight, std=0.001)
elif type(m) == nn.Conv2d:
nn.init.normal_(m.weight, std=0.001)
nn.init.constant_(m.bias, 0)
elif type(m) == nn.BatchNorm2d:
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
nn.init.constant_(m.bias, 0)
except AttributeError:
pass
def get_model(mode):
# body
vit_cfg = Config.fromfile(cfg.encoder_config_file)
vit = build_posenet(vit_cfg.model)
body_position_net = PositionNet('body', feat_dim=cfg.feat_dim)
body_rotation_net = BodyRotationNet(feat_dim=cfg.feat_dim)
box_net = BoxNet(feat_dim=cfg.feat_dim)
# hand
hand_position_net = PositionNet('hand', feat_dim=cfg.feat_dim)
hand_roi_net = HandRoI(feat_dim=cfg.feat_dim, upscale=cfg.upscale)
hand_rotation_net = HandRotationNet('hand', feat_dim=cfg.feat_dim)
# face
face_regressor = FaceRegressor(feat_dim=cfg.feat_dim)
if mode == 'train':
# body
if not getattr(cfg, 'random_init', False):
encoder_pretrained_model = torch.load(cfg.encoder_pretrained_model_path)['state_dict']
vit.load_state_dict(encoder_pretrained_model, strict=False)
print(f"Initialize encoder from {cfg.encoder_pretrained_model_path}")
else:
print('Random init!!!!!!!')
body_position_net.apply(init_weights)
body_rotation_net.apply(init_weights)
box_net.apply(init_weights)
# hand
hand_position_net.apply(init_weights)
hand_roi_net.apply(init_weights)
hand_rotation_net.apply(init_weights)
# face
face_regressor.apply(init_weights)
encoder = vit.backbone
model = Model(encoder, body_position_net, body_rotation_net, box_net, hand_position_net, hand_roi_net, hand_rotation_net,
face_regressor)
return model |