File size: 6,707 Bytes
669c2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import sys
import os.path as osp
import argparse
import numpy as np
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import torch
CUR_DIR = osp.dirname(os.path.abspath(__file__))
sys.path.insert(0, osp.join(CUR_DIR, '..', 'main'))
sys.path.insert(0, osp.join(CUR_DIR , '..', 'common'))
from config import cfg
import cv2
from tqdm import tqdm
import json
from typing import Literal, Union
from mmdet.apis import init_detector, inference_detector
from utils.inference_utils import process_mmdet_results, non_max_suppression

class Inferer:

    def __init__(self, pretrained_model, num_gpus, output_folder):
        self.output_folder = output_folder
        self.device = torch.device('cuda') if (num_gpus > 0) else torch.device('cpu')
        print("Infer using device: ", self.device)
        
        # # load model config
        # config_path = osp.join(CUR_DIR, './config', f'config_{pretrained_model}.py')
        # ckpt_path = osp.join(CUR_DIR, '../pretrained_models', f'{pretrained_model}.pth.tar')
        # cfg.get_config_fromfile(config_path)
        # cfg.update_config(num_gpus, ckpt_path, output_folder, self.device)
        # self.cfg = cfg
        # cudnn.benchmark = True
        
        # # load model
        # from base import Demoer
        # demoer = Demoer()
        # demoer._make_model()
        # demoer.model.eval()
        # self.demoer = demoer

        # load faster-rcnn as human detector
        checkpoint_file = osp.join(CUR_DIR, '../pretrained_models/mmdet/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth')
        config_file= osp.join(CUR_DIR, '../pretrained_models/mmdet/mmdet_faster_rcnn_r50_fpn_coco.py')
        model = init_detector(config_file, checkpoint_file, device=self.device)  # or device='cuda:0'
        self.model = model

    def infer(self, original_img, iou_thr, frame, multi_person=False, mesh_as_vertices=False):
        from utils.preprocessing import process_bbox, generate_patch_image
        from utils.vis import render_mesh, save_obj
        from utils.human_models import smpl_x
        mesh_paths = []
        smplx_paths = []
        # prepare input image
        transform = transforms.ToTensor()
        vis_img = original_img.copy()
        original_img_height, original_img_width = original_img.shape[:2]

        ## mmdet inference
        mmdet_results = inference_detector(self.model, original_img)
        mmdet_box = process_mmdet_results(mmdet_results, cat_id=0, multi_person=True)
        
        # early return
        # save original image if no bbox
        if len(mmdet_box[0])<1:
            return original_img, [], []
        
        if not multi_person:
            # only select the largest bbox
            num_bbox = 1
            mmdet_box = mmdet_box[0]
        else:
            # keep bbox by NMS with iou_thr
            mmdet_box = non_max_suppression(mmdet_box[0], iou_thr)
            num_bbox = len(mmdet_box)
        
        ## loop all detected bboxes
        for bbox_id in range(num_bbox):
            mmdet_box_xywh = np.zeros((4))
            # xyxy -> xywh
            mmdet_box_xywh[0] = mmdet_box[bbox_id][0]
            mmdet_box_xywh[1] = mmdet_box[bbox_id][1]
            mmdet_box_xywh[2] =  abs(mmdet_box[bbox_id][2]-mmdet_box[bbox_id][0])
            mmdet_box_xywh[3] =  abs(mmdet_box[bbox_id][3]-mmdet_box[bbox_id][1]) 

            # skip small bboxes by bbox_thr in pixel
            if mmdet_box_xywh[2] < 50 or mmdet_box_xywh[3] < 150:
                continue

            # align these pre-processing steps
            bbox = process_bbox(mmdet_box_xywh, original_img_width, original_img_height)

            # test mmdet pipeline
            if bbox is not None:
                top_left = (int(bbox[0]), int(bbox[1]))
                bottom_right = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
                cv2.rectangle(vis_img, top_left, bottom_right, (0, 0, 255), 2)
            

            # human model inference
            # img, img2bb_trans, bb2img_trans = generate_patch_image(original_img, bbox, 1.0, 0.0, False, self.cfg.input_img_shape)
            # img = transform(img.astype(np.float32))/255
            # img = img.to(cfg.device)[None,:,:,:]
            # inputs = {'img': img}
            # targets = {}
            # meta_info = {}

            # # mesh recovery
            # with torch.no_grad():
            #     out = self.demoer.model(inputs, targets, meta_info, 'test')
            # mesh = out['smplx_mesh_cam'].detach().cpu().numpy()[0]

            # ## save mesh
            # save_path_mesh = os.path.join(self.output_folder, 'mesh')
            # os.makedirs(save_path_mesh, exist_ok= True)
            # obj_path = os.path.join(save_path_mesh, f'{frame:05}_{bbox_id}.obj')
            # save_obj(mesh, smpl_x.face, obj_path)
            # mesh_paths.append(obj_path)
            # ## save single person param
            # smplx_pred = {}
            # smplx_pred['global_orient'] = out['smplx_root_pose'].reshape(-1,3).cpu().numpy()
            # smplx_pred['body_pose'] = out['smplx_body_pose'].reshape(-1,3).cpu().numpy()
            # smplx_pred['left_hand_pose'] = out['smplx_lhand_pose'].reshape(-1,3).cpu().numpy()
            # smplx_pred['right_hand_pose'] = out['smplx_rhand_pose'].reshape(-1,3).cpu().numpy()
            # smplx_pred['jaw_pose'] = out['smplx_jaw_pose'].reshape(-1,3).cpu().numpy()
            # smplx_pred['leye_pose'] = np.zeros((1, 3))
            # smplx_pred['reye_pose'] = np.zeros((1, 3))
            # smplx_pred['betas'] = out['smplx_shape'].reshape(-1,10).cpu().numpy()
            # smplx_pred['expression'] = out['smplx_expr'].reshape(-1,10).cpu().numpy()
            # smplx_pred['transl'] =  out['cam_trans'].reshape(-1,3).cpu().numpy()
            # save_path_smplx = os.path.join(self.output_folder, 'smplx')
            # os.makedirs(save_path_smplx, exist_ok= True)

            # npz_path = os.path.join(save_path_smplx, f'{frame:05}_{bbox_id}.npz')
            # np.savez(npz_path, **smplx_pred)
            # smplx_paths.append(npz_path)

            # ## render single person mesh
            # focal = [self.cfg.focal[0] / self.cfg.input_body_shape[1] * bbox[2], self.cfg.focal[1] / self.cfg.input_body_shape[0] * bbox[3]]
            # princpt = [self.cfg.princpt[0] / self.cfg.input_body_shape[1] * bbox[2] + bbox[0], self.cfg.princpt[1] / self.cfg.input_body_shape[0] * bbox[3] + bbox[1]]
            # vis_img = render_mesh(vis_img, mesh, smpl_x.face, {'focal': focal, 'princpt': princpt}, 
            #                       mesh_as_vertices=mesh_as_vertices)
            # vis_img = vis_img.astype('uint8') 
        return vis_img, bbox