Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
def make_linear_layers(feat_dims, relu_final=True, use_bn=False): | |
layers = [] | |
for i in range(len(feat_dims)-1): | |
layers.append(nn.Linear(feat_dims[i], feat_dims[i+1])) | |
# Do not use ReLU for final estimation | |
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and relu_final): | |
if use_bn: | |
layers.append(nn.BatchNorm1d(feat_dims[i+1])) | |
layers.append(nn.ReLU(inplace=True)) | |
return nn.Sequential(*layers) | |
def make_conv_layers(feat_dims, kernel=3, stride=1, padding=1, bnrelu_final=True): | |
layers = [] | |
for i in range(len(feat_dims)-1): | |
layers.append( | |
nn.Conv2d( | |
in_channels=feat_dims[i], | |
out_channels=feat_dims[i+1], | |
kernel_size=kernel, | |
stride=stride, | |
padding=padding | |
)) | |
# Do not use BN and ReLU for final estimation | |
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and bnrelu_final): | |
layers.append(nn.BatchNorm2d(feat_dims[i+1])) | |
layers.append(nn.ReLU(inplace=True)) | |
return nn.Sequential(*layers) | |
def make_deconv_layers(feat_dims, bnrelu_final=True): | |
layers = [] | |
for i in range(len(feat_dims)-1): | |
layers.append( | |
nn.ConvTranspose2d( | |
in_channels=feat_dims[i], | |
out_channels=feat_dims[i+1], | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
output_padding=0, | |
bias=False)) | |
# Do not use BN and ReLU for final estimation | |
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and bnrelu_final): | |
layers.append(nn.BatchNorm2d(feat_dims[i+1])) | |
layers.append(nn.ReLU(inplace=True)) | |
return nn.Sequential(*layers) | |