imabackstabber commited on
Commit
d8f27c1
1 Parent(s): 64b1698

try using yolox

Browse files
main/__pycache__/config.cpython-39.pyc CHANGED
Binary files a/main/__pycache__/config.cpython-39.pyc and b/main/__pycache__/config.cpython-39.pyc differ
 
main/inference.py CHANGED
@@ -48,6 +48,11 @@ class Inferer:
48
  model = init_detector(config_file, checkpoint_file, device=self.device) # or device='cuda:0'
49
  self.model = model
50
 
 
 
 
 
 
51
  def infer(self, original_img, iou_thr, multi_person=False, mesh_as_vertices=False):
52
  from utils.preprocessing import process_bbox, generate_patch_image
53
  from utils.vis import render_mesh
 
48
  model = init_detector(config_file, checkpoint_file, device=self.device) # or device='cuda:0'
49
  self.model = model
50
 
51
+ # checkpoint_file = osp.join(CUR_DIR, '../pretrained_models/mmdet/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth')
52
+ # config_file= osp.join(CUR_DIR, '../pretrained_models/mmdet/yolox_x_8x8-300e_coco.py')
53
+ # model = init_detector(config_file, checkpoint = checkpoint_file, device=self.device) # or device='cuda:0'
54
+ # self.model = model
55
+
56
  def infer(self, original_img, iou_thr, multi_person=False, mesh_as_vertices=False):
57
  from utils.preprocessing import process_bbox, generate_patch_image
58
  from utils.vis import render_mesh
pretrained_models/mmdet/yolox_s_8x8-300e_coco.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ img_scale = (640, 640) # height, width
2
+
3
+ # model settings
4
+ model = dict(
5
+ type='YOLOX',
6
+ input_size=img_scale,
7
+ random_size_range=(15, 25),
8
+ random_size_interval=10,
9
+ backbone=dict(type='CSPDarknet', deepen_factor=0.33, widen_factor=0.5),
10
+ neck=dict(
11
+ type='YOLOXPAFPN',
12
+ in_channels=[128, 256, 512],
13
+ out_channels=128,
14
+ num_csp_blocks=1),
15
+ bbox_head=dict(
16
+ type='YOLOXHead', num_classes=80, in_channels=128, feat_channels=128),
17
+ train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
18
+ # In order to align the source code, the threshold of the val phase is
19
+ # 0.01, and the threshold of the test phase is 0.001.
20
+ test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
21
+
22
+ # dataset settings
23
+ data_root = 'data/coco/'
24
+ dataset_type = 'CocoDataset'
25
+
26
+ train_pipeline = [
27
+ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
28
+ dict(
29
+ type='RandomAffine',
30
+ scaling_ratio_range=(0.1, 2),
31
+ border=(-img_scale[0] // 2, -img_scale[1] // 2)),
32
+ dict(
33
+ type='MixUp',
34
+ img_scale=img_scale,
35
+ ratio_range=(0.8, 1.6),
36
+ pad_val=114.0),
37
+ dict(type='YOLOXHSVRandomAug'),
38
+ dict(type='RandomFlip', flip_ratio=0.5),
39
+ # According to the official implementation, multi-scale
40
+ # training is not considered here but in the
41
+ # 'mmdet/models/detectors/yolox.py'.
42
+ dict(type='Resize', img_scale=img_scale, keep_ratio=True),
43
+ dict(
44
+ type='Pad',
45
+ pad_to_square=True,
46
+ # If the image is three-channel, the pad value needs
47
+ # to be set separately for each channel.
48
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
49
+ dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
50
+ dict(type='DefaultFormatBundle'),
51
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
52
+ ]
53
+
54
+ train_dataset = dict(
55
+ type='MultiImageMixDataset',
56
+ dataset=dict(
57
+ type=dataset_type,
58
+ ann_file=data_root + 'annotations/instances_train2017.json',
59
+ img_prefix=data_root + 'train2017/',
60
+ pipeline=[
61
+ dict(type='LoadImageFromFile'),
62
+ dict(type='LoadAnnotations', with_bbox=True)
63
+ ],
64
+ filter_empty_gt=False,
65
+ ),
66
+ pipeline=train_pipeline)
67
+
68
+ test_pipeline = [
69
+ dict(type='LoadImageFromFile'),
70
+ dict(
71
+ type='MultiScaleFlipAug',
72
+ img_scale=img_scale,
73
+ flip=False,
74
+ transforms=[
75
+ dict(type='Resize', keep_ratio=True),
76
+ dict(type='RandomFlip'),
77
+ dict(
78
+ type='Pad',
79
+ pad_to_square=True,
80
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
81
+ dict(type='DefaultFormatBundle'),
82
+ dict(type='Collect', keys=['img'])
83
+ ])
84
+ ]
85
+
86
+ data = dict(
87
+ samples_per_gpu=8,
88
+ workers_per_gpu=4,
89
+ persistent_workers=True,
90
+ train=train_dataset,
91
+ val=dict(
92
+ type=dataset_type,
93
+ ann_file=data_root + 'annotations/instances_val2017.json',
94
+ img_prefix=data_root + 'val2017/',
95
+ pipeline=test_pipeline),
96
+ test=dict(
97
+ type=dataset_type,
98
+ ann_file=data_root + 'annotations/instances_val2017.json',
99
+ img_prefix=data_root + 'val2017/',
100
+ pipeline=test_pipeline))
101
+
102
+ evaluation = dict(interval=1, metric='bbox')
pretrained_models/mmdet/yolox_x_8x8-300e_coco.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ _base_ = './yolox_s_8x8-300e_coco.py'
2
+
3
+ # model settings
4
+ model = dict(
5
+ backbone=dict(deepen_factor=1.33, widen_factor=1.25),
6
+ neck=dict(
7
+ in_channels=[320, 640, 1280], out_channels=320, num_csp_blocks=4),
8
+ bbox_head=dict(in_channels=320, feat_channels=320))
pretrained_models/mmdet/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ef88d67f9c912a7c3a6df4f4d9bdf391cf70df867e6c9d7f249c7a3990e3dec
3
+ size 396898755