import os import sys import os.path as osp from pathlib import Path import cv2 import gradio as gr import torch import math import spaces try: import mmpose except: os.system('pip install /home/user/app/main/transformer_utils') os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py') DEFAULT_MODEL='postometro' # for config OUT_FOLDER = '/home/user/app/demo_out' os.makedirs(OUT_FOLDER, exist_ok=True) @spaces.GPU(enable_queue=True) def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh=False): num_gpus = 1 if torch.cuda.is_available() else -1 # dismiss cuda information # print("!!! torch.cuda.is_available: ", torch.cuda.is_available()) # print("!!! torch.cuda.device_count: ", torch.cuda.device_count()) # print("CUDA version: ", torch.version.cuda) # index = torch.cuda.current_device() # print("CUDA current_device: ", index) # print("CUDA device_name: ", torch.cuda.get_device_name(index)) from main.inference import Inferer inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER) os.system(f'rm -rf {OUT_FOLDER}/*') multi_person = False if (num_people == "Single person") else True vis_img, bbox_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, multi_person, not(render_mesh)) return vis_img, bbox_img, "bbox num: {}\nbbox meta: {}".format(num_bbox, mmdet_box) TITLE = '''
Note: You can drop a image at the panel (or select one of the examples) to obtain the 3D parametric reconstructions of the detected humans.
Check out our paper on arxiv page!
Our demo is built upon SMPLer-X. Thanks for their amazing works!
''' with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo: gr.Markdown(TITLE) gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image_input = gr.Image(label="Input image", elem_classes="Image") threshold = gr.Slider(0, 1.0, value=0.2, label='BBox detection threshold', info="PostoMETRO will take in cropped bboxes as input to produce human mesh. A small threshold will prevent redundant bboxes and vice versa.") num_people = gr.Radio( choices=["Single person", "Multiple people"], value="Multiple people", label="Number of people", info="Choose how many people are there in the image. Default to 'Multiple people' for better visualization.", interactive=True, scale=1,) mesh_as_vertices = gr.Checkbox( label="Render as mesh", value=True, info="Default to render mesh for better visualization. For faster inference, one can choose to not check the box.", interactive=True, scale=1,) send_button = gr.Button("Infer") with gr.Column(): processed_frames = gr.Image(label="Rendered Results") bbox_frames = gr.Image(label="Bbox Results") debug_textbox = gr.Textbox(label="Debug information") # example_images = gr.Examples([]) send_button.click(fn=infer, inputs=[image_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, bbox_frames, debug_textbox]) # with gr.Row(): example_images = gr.Examples([ ['/home/user/app/assets/01.jpg'], ['/home/user/app/assets/02.jpg'], ['/home/user/app/assets/03.jpg'], ['/home/user/app/assets/04.jpg'], ['/home/user/app/assets/05.jpg'], ['/home/user/app/assets/06.jpg'], ], inputs=[image_input, 0.2]) #demo.queue() demo.queue().launch(debug=True)