Spaces:
Paused
Paused
Upload folder using huggingface_hub
Browse files- README.md +8 -6
- app.py +105 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: aya-101
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.23.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
header: mini
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import spaces
|
8 |
+
import gradio as gr
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
10 |
+
|
11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
+
|
13 |
+
MODEL_ID = os.environ.get("MODEL_ID")
|
14 |
+
CHAT_TEMPLATE = os.environ.get("CHAT_TEMPLATE")
|
15 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
16 |
+
CONTEXT_LENGTH = int(os.environ.get("CONTEXT_LENGTH"))
|
17 |
+
COLOR = os.environ.get("COLOR")
|
18 |
+
EMOJI = os.environ.get("EMOJI")
|
19 |
+
DESCRIPTION = os.environ.get("DESCRIPTION")
|
20 |
+
|
21 |
+
|
22 |
+
@spaces.GPU()
|
23 |
+
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
24 |
+
# Format history with a given chat template
|
25 |
+
if CHAT_TEMPLATE == "ChatML":
|
26 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
27 |
+
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
|
28 |
+
for human, assistant in history:
|
29 |
+
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
|
30 |
+
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
|
31 |
+
elif CHAT_TEMPLATE == "Mistral Instruct":
|
32 |
+
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
33 |
+
instruction = '<s>[INST] ' + system_prompt
|
34 |
+
for human, assistant in history:
|
35 |
+
instruction += human + ' [/INST] ' + assistant + '</s>[INST]'
|
36 |
+
instruction += ' ' + message + ' [/INST]'
|
37 |
+
else:
|
38 |
+
raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'")
|
39 |
+
print(instruction)
|
40 |
+
|
41 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
42 |
+
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
|
43 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
44 |
+
|
45 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
46 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
47 |
+
|
48 |
+
generate_kwargs = dict(
|
49 |
+
{"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)},
|
50 |
+
streamer=streamer,
|
51 |
+
do_sample=True,
|
52 |
+
temperature=temperature,
|
53 |
+
max_new_tokens=max_new_tokens,
|
54 |
+
top_k=top_k,
|
55 |
+
repetition_penalty=repetition_penalty,
|
56 |
+
top_p=top_p
|
57 |
+
)
|
58 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
59 |
+
t.start()
|
60 |
+
outputs = []
|
61 |
+
for new_token in streamer:
|
62 |
+
outputs.append(new_token)
|
63 |
+
if new_token in stop_tokens:
|
64 |
+
break
|
65 |
+
yield "".join(outputs)
|
66 |
+
|
67 |
+
|
68 |
+
# Load model
|
69 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
70 |
+
quantization_config = BitsAndBytesConfig(
|
71 |
+
load_in_4bit=True,
|
72 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
73 |
+
)
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
75 |
+
model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
MODEL_ID,
|
77 |
+
device_map="auto",
|
78 |
+
quantization_config=quantization_config,
|
79 |
+
attn_implementation="flash_attention_2",
|
80 |
+
)
|
81 |
+
|
82 |
+
# Create Gradio interface
|
83 |
+
gr.ChatInterface(
|
84 |
+
predict,
|
85 |
+
title=EMOJI + " " + MODEL_NAME,
|
86 |
+
description=DESCRIPTION,
|
87 |
+
examples=[
|
88 |
+
["Can you solve the equation 2x + 3 = 11 for x?"],
|
89 |
+
["Write an epic poem about Ancient Rome."],
|
90 |
+
["Who was the first person to walk on the Moon?"],
|
91 |
+
["Use a list comprehension to create a list of squares for numbers from 1 to 10."],
|
92 |
+
["Recommend some popular science fiction books."],
|
93 |
+
["Can you write a short story about a time-traveling detective?"]
|
94 |
+
],
|
95 |
+
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False),
|
96 |
+
additional_inputs=[
|
97 |
+
gr.Textbox("Perform the task to the best of your ability.", label="System prompt"),
|
98 |
+
gr.Slider(0, 1, 0.8, label="Temperature"),
|
99 |
+
gr.Slider(128, 4096, 1024, label="Max new tokens"),
|
100 |
+
gr.Slider(1, 80, 40, label="Top K sampling"),
|
101 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
102 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
103 |
+
],
|
104 |
+
theme=gr.themes.Soft(primary_hue=COLOR),
|
105 |
+
).queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.38.2
|
2 |
+
accelerate
|
3 |
+
bitsandbytes
|
4 |
+
optimum
|