Spaces:
Sleeping
Sleeping
initial commit
Browse files- app.py +91 -0
- effnetb3_full_food101.pth +3 -0
- examples/.ipynb_checkpoints/3301718-checkpoint.jpg +0 -0
- examples/2522597.jpg +0 -0
- examples/3301718.jpg +0 -0
- examples/368383.jpg +0 -0
- examples/3890499.jpg +0 -0
- examples/999399.jpg +0 -0
- model.py +32 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from timeit import default_timer as timer
|
3 |
+
from typing import Tuple
|
4 |
+
from pathlib import Path
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torchvision import transforms
|
11 |
+
|
12 |
+
from model import create_effnetb3_model
|
13 |
+
|
14 |
+
class_names = ['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare',
|
15 |
+
'beet_salad', 'beignets', 'bibimbap', 'bread_pudding', 'breakfast_burrito',
|
16 |
+
'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad', 'carrot_cake',
|
17 |
+
'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla',
|
18 |
+
'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder',
|
19 |
+
'club_sandwich', 'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes',
|
20 |
+
'deviled_eggs', 'donuts', 'dumplings', 'edamame', 'eggs_benedict',
|
21 |
+
'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras',
|
22 |
+
'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice',
|
23 |
+
'frozen_yogurt', 'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich',
|
24 |
+
'grilled_salmon', 'guacamole', 'gyoza', 'hamburger', 'hot_and_sour_soup',
|
25 |
+
'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream', 'lasagna',
|
26 |
+
'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup',
|
27 |
+
'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters',
|
28 |
+
'pad_thai', 'paella', 'pancakes', 'panna_cotta', 'peking_duck',
|
29 |
+
'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib',
|
30 |
+
'pulled_pork_sandwich', 'ramen', 'ravioli', 'red_velvet_cake', 'risotto',
|
31 |
+
'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits',
|
32 |
+
'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake',
|
33 |
+
'sushi', 'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles']
|
34 |
+
|
35 |
+
device = "cpu"
|
36 |
+
|
37 |
+
# Create model
|
38 |
+
effnetb3, effnetb3_transforms = create_effnetb3_model(num_classes=len(class_names))
|
39 |
+
|
40 |
+
# Load saved weights
|
41 |
+
effnetb3_state_dict = torch.load("effnetb3_full_food101.pth",
|
42 |
+
map_location=torch.device(device))
|
43 |
+
effnetb3_state_dict['classifier.1.weight'] = effnetb3_state_dict.pop('classifier.weight')
|
44 |
+
effnetb3_state_dict['classifier.1.bias'] = effnetb3_state_dict.pop('classifier.bias')
|
45 |
+
effnetb3.load_state_dict(effnetb3_state_dict)
|
46 |
+
effnetb3.to(device);
|
47 |
+
|
48 |
+
# Define predict function
|
49 |
+
def predict(img: Image) -> Tuple[dict, float]:
|
50 |
+
"""Uses EffnetB3 model to transform and predict on img. Returns prediction
|
51 |
+
probabilities and time taken.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
img (PIL.Image): Image to predict on.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
A tuple (pred_labels_and_probs, pred_time), where pred_labels_and_probs
|
58 |
+
is a dict mapping each class name to the probability the model assigns to
|
59 |
+
it, and pred_time is the time taken to predict (in seconds).
|
60 |
+
"""
|
61 |
+
start_time = timer()
|
62 |
+
img = effnetb3_transforms(img).unsqueeze(0)
|
63 |
+
effnetb3.eval()
|
64 |
+
with torch.inference_mode():
|
65 |
+
pred_probs = torch.softmax(effnetb3(img), dim=1)
|
66 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i])
|
67 |
+
for i in range(len(class_names))}
|
68 |
+
pred_time = round(timer() - start_time, 4)
|
69 |
+
return pred_labels_and_probs, pred_time
|
70 |
+
|
71 |
+
# Initialize Gradio app
|
72 |
+
title = "FoodVision"
|
73 |
+
description = "EfficientNetB3 feature extractor to classify images of food. Upload an image or click on one of the examples to try it out!"
|
74 |
+
article = """
|
75 |
+
From the [Zero to Mastery PyTorch tutorial](https://www.learnpytorch.io/09_pytorch_model_deployment/), using the
|
76 |
+
[Food-101 dataset](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/).
|
77 |
+
"""
|
78 |
+
examples = [[example] for example in Path("examples").glob("*.jpg")]
|
79 |
+
|
80 |
+
demo = gr.Interface(
|
81 |
+
fn=predict,
|
82 |
+
inputs=gr.Image(type="pil"),
|
83 |
+
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
|
84 |
+
gr.Number(label="Prediction time (s)")],
|
85 |
+
examples=examples,
|
86 |
+
title=title,
|
87 |
+
description=description,
|
88 |
+
article=article,
|
89 |
+
)
|
90 |
+
|
91 |
+
demo.launch()
|
effnetb3_full_food101.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:221dfc2c8bcb2664081e0c57fffcb04001e77b523613538aa29f1ed2870c5c79
|
3 |
+
size 43989701
|
examples/.ipynb_checkpoints/3301718-checkpoint.jpg
ADDED
examples/2522597.jpg
ADDED
examples/3301718.jpg
ADDED
examples/368383.jpg
ADDED
examples/3890499.jpg
ADDED
examples/999399.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torchvision
|
6 |
+
|
7 |
+
def create_effnetb3_model(num_classes: int = 101,
|
8 |
+
seed: int = 4,
|
9 |
+
) -> Tuple[nn.Module, torchvision.transforms.Compose]:
|
10 |
+
"""Create an EfficientNetB2 feature extractor model and transforms.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
num_classes: Number of classes to use for classification (default 3).
|
14 |
+
seed: Random seed for reproducibility (default 4).
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
A tuple (model, transforms) of the model and its image transforms.
|
18 |
+
"""
|
19 |
+
weights = torchvision.models.EfficientNet_B3_Weights.DEFAULT
|
20 |
+
transforms = weights.transforms()
|
21 |
+
model = torchvision.models.efficientnet_b3(weights=weights)
|
22 |
+
|
23 |
+
# Freeze parameters below the head
|
24 |
+
for param in model.parameters():
|
25 |
+
param.requires_grad = False
|
26 |
+
# Replace the classifier head with one of appropriate size for the problem
|
27 |
+
torch.manual_seed(seed)
|
28 |
+
model.classifier = nn.Sequential(
|
29 |
+
nn.Dropout(p=0.3, inplace=True),
|
30 |
+
nn.Linear(in_features=1536, out_features=num_classes)
|
31 |
+
)
|
32 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.37.0
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision==0.15.2
|