Spaces:
Configuration error
Configuration error
from PIL import Image, ImageFilter | |
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation, SegformerImageProcessor, AutoModelForSemanticSegmentation | |
import numpy as np | |
import torch.nn as nn | |
from scipy.ndimage import binary_dilation | |
model_body = None | |
extractor_body = None | |
model_face = None | |
extractor_face = None | |
def init_body(): | |
global model_body, extractor_body | |
extractor_body = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes") | |
model_body = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes").to("cuda") | |
def init_face(): | |
global model_face, extractor_face | |
extractor_face = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing") | |
model_face = AutoModelForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing").to("cuda") | |
def get_mask(img: Image, body_part_id: int, inverse=False, face=False): | |
if face: | |
inputs = extractor_face(images=img, return_tensors="pt").to("cuda") | |
outputs = model_face(**inputs) | |
else: | |
inputs = extractor_body(images=img, return_tensors="pt").to("cuda") | |
outputs = model_body(**inputs) | |
logits = outputs.logits.cpu() | |
upsampled_logits = nn.functional.interpolate( | |
logits, | |
size=img.size[::-1], | |
mode="bilinear", | |
align_corners=False, | |
) | |
pred_seg = upsampled_logits.argmax(dim=1)[0] | |
if inverse: | |
pred_seg[pred_seg == body_part_id ] = 0 | |
else: | |
pred_seg[pred_seg != body_part_id ] = 0 | |
arr_seg = pred_seg.cpu().numpy().astype("uint8") | |
arr_seg *= 255 | |
pil_seg = Image.fromarray(arr_seg) | |
return pil_seg | |
def get_cropped(img: Image, body_part_id: int, inverse:bool, face:bool): | |
pil_seg = get_mask(img, body_part_id, inverse, face) | |
crop_mask_np = np.array(pil_seg.convert('L')) | |
crop_mask_binary = crop_mask_np > 128 | |
dilated_mask = binary_dilation( | |
crop_mask_binary, iterations=1) | |
dilated_mask = Image.fromarray((dilated_mask * 255).astype(np.uint8)) | |
mask = Image.fromarray(np.array(dilated_mask)).convert('L') | |
im_rgb = img.convert("RGB") | |
cropped = im_rgb.copy() | |
cropped.putalpha(mask) | |
return cropped | |
def get_blurred_mask(img: Image, body_part_id: int, inverse=False): | |
pil_seg = get_mask(img, body_part_id, inverse) | |
crop_mask_np = np.array(pil_seg.convert('L')) | |
crop_mask_binary = crop_mask_np > 128 | |
dilated_mask = binary_dilation( | |
crop_mask_binary, iterations=25) | |
dilated_mask = Image.fromarray((dilated_mask * 255).astype(np.uint8)) | |
dilated_mask_blurred = dilated_mask.filter( | |
ImageFilter.GaussianBlur(radius=4)) | |
return dilated_mask_blurred | |