from PIL import Image, ImageFilter from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation, SegformerImageProcessor, AutoModelForSemanticSegmentation import numpy as np import torch.nn as nn from scipy.ndimage import binary_dilation model_body = None extractor_body = None model_face = None extractor_face = None def init_body(): global model_body, extractor_body extractor_body = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes") model_body = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes").to("cuda") def init_face(): global model_face, extractor_face extractor_face = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing") model_face = AutoModelForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing") def get_mask(img: Image, body_part_id: int, inverse=False, face=False): if face: inputs = extractor_face(images=img, return_tensors="pt").to("cuda") outputs = model_face(**inputs) else: inputs = extractor_body(images=img, return_tensors="pt").to("cuda") outputs = model_body(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=img.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] if inverse: pred_seg[pred_seg == body_part_id ] = 0 else: pred_seg[pred_seg != body_part_id ] = 0 arr_seg = pred_seg.cpu().numpy().astype("uint8") arr_seg *= 255 pil_seg = Image.fromarray(arr_seg) return pil_seg def get_cropped(img: Image, body_part_id: int, inverse=False): # img openpose gen image olucak pil_seg = get_mask(img, body_part_id, inverse) crop_mask_np = np.array(pil_seg.convert('L')) crop_mask_binary = crop_mask_np > 128 dilated_mask = binary_dilation( crop_mask_binary, iterations=1) dilated_mask = Image.fromarray((dilated_mask * 255).astype(np.uint8)) mask = Image.fromarray(np.array(dilated_mask)).convert('L') im_rgb = img.convert("RGB") cropped = im_rgb.copy() cropped.putalpha(mask) return cropped def get_blurred_mask(img: Image, body_part_id: int, inverse=False): pil_seg = get_mask(img, body_part_id, inverse) crop_mask_np = np.array(pil_seg.convert('L')) crop_mask_binary = crop_mask_np > 128 dilated_mask = binary_dilation( crop_mask_binary, iterations=25) dilated_mask = Image.fromarray((dilated_mask * 255).astype(np.uint8)) dilated_mask_blurred = dilated_mask.filter( ImageFilter.GaussianBlur(radius=4)) return dilated_mask_blurred