File size: 29,676 Bytes
1f43fd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
"""Training example.
Modified from https://github.com/pytorch/examples/blob/main/imagenet/main.py.
"""
import argparse
import json
import os
import sys
import time
import warnings
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
from torch.optim.lr_scheduler import StepLR
from warmup_scheduler import GradualWarmupScheduler
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.tensorboard import SummaryWriter
import torchvision
from fromage import data
from fromage import losses as losses_utils
from fromage import models
from fromage import utils
from fromage import evaluate
from transformers import AutoTokenizer
# Disable HuggingFace tokenizer parallelism.
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Available LLM models.
llm_models = ['facebook/opt-125m', 'facebook/opt-350m', 'facebook/opt-1.3b',
'facebook/opt-2.7b', 'facebook/opt-6.7b', 'facebook/opt-13b', 'facebook/opt-30b',
'facebook/opt-66b']
datasets = ['cc3m']
best_score = 0 # Variable to keep track of best model so far.
def parse_args(args):
parser = argparse.ArgumentParser(description='FROMAGe training')
parser.add_argument('--opt-version', default='facebook/opt-6.7b',
choices=llm_models,
help='OPT versions: ' +
' | '.join(llm_models) +
' (default: "facebook/opt-6.7b")')
parser.add_argument('--visual-model', default='openai/clip-vit-large-patch14', type=str,
help="Visual encoder to use.")
parser.add_argument('-d', '--dataset', metavar='DATASET', help='Delimited list of datasets:' +
' | '.join(datasets), default='cc3m',
type=lambda s: [x for x in s.split(',')])
parser.add_argument('--val-dataset', metavar='DATASET', default='cc3m',
type=lambda s: [x for x in s.split(',')],
help='Validation dataset: ' +
' | '.join(datasets) +
' (default: cc3m)')
parser.add_argument('--dataset_dir', default='datasets', type=str,
help='Dataset directory containing .tsv files.')
parser.add_argument('--image-dir', default='./data/', type=str,
help='Dataset directory containing image folders.')
parser.add_argument('--log-base-dir', default='./runs/', type=str,
help='Base directory to write logs and ckpts to.')
parser.add_argument('--exp_name', default='frozen', type=str,
help='Name of experiment, used for saving checkpoints.')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=10, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--steps-per-epoch', default=2000, type=int, metavar='N',
help='number of training steps per epoch')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--val-steps-per-epoch', default=-1, type=int, metavar='N',
help='number of validation steps per epoch.')
parser.add_argument('-b', '--batch-size', default=180, type=int,
metavar='N',
help='mini-batch size (default: 180), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--val-batch-size', default=None, type=int)
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--lr-warmup-steps', default=100, type=int,
metavar='N', help='Number of steps to warm up lr.')
parser.add_argument('--lr-schedule-step-size', default=10, type=int,
metavar='N', help='Number of steps before decaying lr.')
parser.add_argument('--lr-schedule-gamma', default=0.1, type=float,
metavar='N', help='Decay parameter for learning rate scheduler.')
parser.add_argument('--grad-accumulation-steps', default=1, type=int, metavar='N',
help='number of gradient accumulation steps')
parser.add_argument('--grad-clip', default=1.0, type=float, help='gradient clipping amount')
parser.add_argument('--precision', default='fp32', type=str, choices=['fp32', 'fp16', 'bf16'], help="Precision to train in.")
parser.add_argument('--cap-loss-scale', type=float, default=1.0, help="Scale on captioning loss.")
parser.add_argument('--ret-loss-scale', type=float, default=1.0, help="Scale on retrieval loss.")
parser.add_argument('--concat-captions-prob', type=float, default=0.5, help="Probability of concatenating two examples sequentially for captioning.")
parser.add_argument('--concat-for-ret', action='store_true', default=False, help="Whether to concatenate examples for retrieval mode.")
parser.add_argument('--input-prompt', default=None, type=str, help="Input prompt for the language model, if any.")
parser.add_argument('--image-size', default=224, type=int, metavar='N', help='Size of images.')
parser.add_argument('--use_image_embed_norm', action='store_true', default=False, help="Whether to use norm on the image embeddings to make them equal to language.")
parser.add_argument('--image_embed_dropout_prob', type=float, default=0.0, help="Dropout probability on the image embeddings.")
parser.add_argument('--use_text_embed_layernorm', action='store_true', default=False, help="Whether to use layer norm on the text embeddings for retrieval.")
parser.add_argument('--text_embed_dropout_prob', type=float, default=0.0, help="Dropout probability on the text embeddings.")
parser.add_argument('--shared-emb-dim', default=256, type=int, metavar='N', help='Embedding dimension for retrieval.')
parser.add_argument('--text-emb-layers', help='Layer to use for text embeddings. OPT-2.7b has 33 layers.', default='-1',
type=lambda s: [int(x) for x in s.split(',')])
parser.add_argument('--max-len', default=24, type=int,
metavar='N', help='Maximum length to truncate captions / generations to.')
parser.add_argument('--n-visual-tokens', default=1, type=int,
metavar='N', help='Number of visual tokens to use for the Frozen model.')
parser.add_argument('--beta1', default=0.9, type=float, metavar='M', help='beta1 for Adam')
parser.add_argument('--beta2', default=0.95, type=float, metavar='M', help='beta2 for Adam')
parser.add_argument('--wd', '--weight-decay', default=0.0, type=float,
metavar='W', help='weight decay (default: 0.0)', dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:1337', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
return parser.parse_args(args)
def main(args):
args = parse_args(args)
i = 1
args.log_dir = os.path.join(args.log_base_dir, args.exp_name)
while os.path.exists(args.log_dir):
args.log_dir = os.path.join(args.log_base_dir, f'{args.exp_name}_{i}')
i += 1
os.makedirs(args.log_dir)
with open(os.path.join(args.log_dir, f'args.json'), 'w') as wf:
json.dump(vars(args), wf, indent=4)
with open(os.path.join(args.log_dir, f'git_info.txt'), 'w') as wf:
utils.dump_git_status(out_file=wf)
print(f'Logging to {args.log_dir}.')
if args.seed is not None:
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
"""Setup code."""
global best_score
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# Create model
model_args = models.FrozenArgs()
model_args.opt_version = args.opt_version
model_args.freeze_lm = True
model_args.visual_encoder = args.visual_model
model_args.freeze_vm = True
model_args.n_visual_tokens = args.n_visual_tokens
model_args.use_image_embed_norm = args.use_image_embed_norm
model_args.image_embed_dropout_prob = args.image_embed_dropout_prob
model_args.use_text_embed_layernorm = args.use_text_embed_layernorm
model_args.text_embed_dropout_prob = args.text_embed_dropout_prob
model_args.shared_emb_dim = args.shared_emb_dim
model_args.text_emb_layers = args.text_emb_layers
tokenizer = AutoTokenizer.from_pretrained(args.opt_version, use_fast=False)
# Add an image token for loss masking (and visualization) purposes.
tokenizer.add_special_tokens({"cls_token": "<|image|>"}) # add special image token to tokenizer
print('Adding [RET] token to vocabulary.')
print('Before adding new token, tokenizer("[RET]") =', tokenizer('[RET]', add_special_tokens=False))
num_added_tokens = tokenizer.add_tokens('[RET]')
print(f'After adding {num_added_tokens} new tokens, tokenizer("[RET]") =', tokenizer('[RET]', add_special_tokens=False))
ret_token_idx = tokenizer('[RET]', add_special_tokens=False).input_ids
assert len(ret_token_idx) == 1, ret_token_idx
model_args.retrieval_token_idx = ret_token_idx[0]
args.retrieval_token_idx = ret_token_idx[0]
# Save model args to disk.
with open(os.path.join(args.log_dir, 'model_args.json'), 'w') as f:
json.dump(vars(model_args), f, indent=4)
model = models.Fromage(tokenizer, model_args)
if args.precision == 'fp16':
model = model.float()
elif args.precision == 'bf16':
model = model.bfloat16()
# Print parameters and count of model.
param_counts_text = utils.get_params_count_str(model)
with open(os.path.join(args.log_dir, 'param_count.txt'), 'w') as f:
f.write(param_counts_text)
# Log trainable parameters to Tensorboard.
_, total_trainable_params, total_nontrainable_params = utils.get_params_count(model)
writer = SummaryWriter(args.log_dir)
writer.add_scalar('params/total', total_trainable_params + total_nontrainable_params, 0)
writer.add_scalar('params/total_trainable', total_trainable_params, 0)
writer.add_scalar('params/total_non_trainable', total_nontrainable_params, 0)
writer.close()
if not torch.cuda.is_available():
print('WARNING: using CPU, this will be slow!')
model = torch.nn.DataParallel(model)
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs of the current node.
args.batch_size = int(args.batch_size / ngpus_per_node)
args.val_batch_size = int((args.val_batch_size or args.batch_size) / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=False)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion), optimizer, and learning rate scheduler
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer_cls = torch.optim.AdamW
print('Using torch.optim.AdamW as the optimizer.')
optimizer = optimizer_cls(model.parameters(), args.lr,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay,
eps=1e-8)
"""Sets the learning rate to the initial LR decayed by 10 every 5 epochs"""
scheduler_steplr = StepLR(optimizer, step_size=args.lr_schedule_step_size * args.steps_per_epoch, gamma=args.lr_schedule_gamma)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1.0, total_epoch=args.lr_warmup_steps, after_scheduler=scheduler_steplr)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_score = checkpoint['best_score']
if args.gpu is not None:
# best_score may be from a checkpoint from a different GPU
best_score = best_score.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
train_dataset = data.get_dataset(args, 'train', tokenizer)
val_dataset = data.get_dataset(args, 'val', tokenizer)
print(f'Training with {len(train_dataset)} examples and validating with {len(val_dataset)} examples.')
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, drop_last=True)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=(args.val_batch_size or args.batch_size), shuffle=False,
num_workers=args.workers, pin_memory=True, sampler=val_sampler)
if args.evaluate:
evaluate.validate(val_loader, model, tokenizer, criterion, epoch, args)
return
for epoch in range(args.start_epoch, args.epochs):
if epoch == 0:
evaluate.validate(val_loader, model, tokenizer, criterion, epoch-1, args)
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train(train_loader, model, tokenizer, criterion, optimizer, epoch, scheduler, args)
# evaluate on validation set
eval_score = evaluate.validate(val_loader, model, tokenizer, criterion, epoch, args)
# remember best score and save checkpoint
is_best = eval_score > best_score
best_score = max(eval_score, best_score)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
utils.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_score': best_score,
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict()
}, is_best, os.path.join(args.log_dir, 'ckpt'))
def train(train_loader, model, tokenizer, criterion, optimizer, epoch, scheduler, args):
"""Main training loop."""
ngpus_per_node = torch.cuda.device_count()
batch_time = utils.AverageMeter('Time', ':6.3f')
cap_time = utils.AverageMeter('CaptioningTime', ':6.3f')
ret_time = utils.AverageMeter('RetrievalTime', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
ce_losses = utils.AverageMeter('CeLoss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
cont_losses = utils.AverageMeter('ContLoss', ':.4e')
top1_caption = utils.AverageMeter('AccCaption@1', ':6.2f')
top5_caption = utils.AverageMeter('AccCaption@5', ':6.2f')
top1_image = utils.AverageMeter('AccImage@1', ':6.2f')
top5_image = utils.AverageMeter('AccImage@5', ':6.2f')
writer = SummaryWriter(args.log_dir)
progress = utils.ProgressMeter(
args.steps_per_epoch,
[batch_time, losses, ce_losses, cont_losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (image_paths, images, caption_images, tgt_tokens, token_len) in enumerate(train_loader):
actual_step = epoch * args.steps_per_epoch + i + 1
# measure data loading time
data_time.update(time.time() - end)
if torch.cuda.is_available():
images = images.cuda(args.gpu, non_blocking=True)
tgt_tokens = tgt_tokens.cuda(args.gpu, non_blocking=True)
token_len = token_len.cuda(args.gpu, non_blocking=True)
if args.precision == 'fp16':
images = images.half()
elif args.precision == 'bf16':
images = images.bfloat16()
model_modes = ['captioning', 'retrieval']
loss = 0
for model_mode in model_modes:
mode_start = time.time()
# compute output
concat_captions = np.random.uniform(0, 1) < args.concat_captions_prob
if not args.concat_for_ret:
concat_captions = concat_captions and model_mode == 'captioning'
(model_output, full_labels, last_embedding, _, visual_embs) = model(
images, tgt_tokens, token_len, mode=model_mode, concat_captions=concat_captions, inference=False)
output = model_output.logits
# Measure captioning accuracy for multi-task models and next-token prediction for retrieval models.
if model_mode == 'captioning':
acc1, acc5 = utils.accuracy(output[:, :-1, :], full_labels[:, 1:], -100, topk=(1, 5))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
ce_loss = model_output.loss
if model_mode == 'captioning':
ce_loss = ce_loss * args.cap_loss_scale
elif model_mode == 'retrieval':
ce_loss = ce_loss * args.ret_loss_scale
else:
raise NotImplementedError
loss += ce_loss
ce_losses.update(ce_loss.item(), images.size(0))
if model_mode == 'retrieval':
# Cross replica concat for embeddings.
if args.distributed:
all_visual_embs = [torch.zeros_like(visual_embs) for _ in range(dist.get_world_size())]
all_last_embedding = [torch.zeros_like(last_embedding) for _ in range(dist.get_world_size())]
dist.all_gather(all_visual_embs, visual_embs)
dist.all_gather(all_last_embedding, last_embedding)
# Overwrite with embeddings produced on this replace, which have the gradient.
all_visual_embs[dist.get_rank()] = visual_embs
all_last_embedding[dist.get_rank()] = last_embedding
visual_embs = torch.cat(all_visual_embs)
last_embedding = torch.cat(all_last_embedding)
start_idx = args.rank * images.shape[0]
end_idx = start_idx + images.shape[0]
logits_per_image = visual_embs @ last_embedding.t()
logits_per_text = logits_per_image.t()
if i == 0:
print(f'Running contrastive loss over logits_per_text.shape = {logits_per_text.shape} and logits_per_image.shape = {logits_per_image.shape}')
# Compute contrastive losses for retrieval.
caption_loss = losses_utils.contrastive_loss(logits_per_text)
image_loss = losses_utils.contrastive_loss(logits_per_image)
caption_acc1, caption_acc5 = losses_utils.contrastive_acc(logits_per_text, topk=(1, 5))
image_acc1, image_acc5 = losses_utils.contrastive_acc(logits_per_image, topk=(1, 5))
loss += args.ret_loss_scale * (caption_loss + image_loss) / 2.0
cont_losses.update(loss.item(), images.size(0))
# measure accuracy and record loss
top1_caption.update(caption_acc1[0], images.size(0))
top5_caption.update(caption_acc5[0], images.size(0))
top1_image.update(image_acc1[0], images.size(0))
top5_image.update(image_acc5[0], images.size(0))
if model_mode == 'retrieval':
ret_time.update(time.time() - mode_start)
elif model_mode == 'captioning':
cap_time.update(time.time() - mode_start)
loss = loss / args.grad_accumulation_steps
losses.update(loss.item(), images.size(0))
loss.backward()
# Update weights
if ((i + 1) % args.grad_accumulation_steps == 0) or (i == args.steps_per_epoch - 1):
# Zero out gradients of the embedding matrix outside of [RET].
for param in model.module.model.input_embeddings.parameters():
assert param.grad.shape[0] == len(tokenizer)
# Keep other embeddings frozen.
mask = torch.arange(param.grad.shape[0]) != args.retrieval_token_idx
param.grad[mask, :] = 0
# compute gradient and do SGD step
if args.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
# Normalize trainable embeddings.
frozen_norm = torch.norm(model.module.model.input_embeddings.weight[:-1, :], dim=1).mean(0)
trainable_weight = model.module.model.input_embeddings.weight[-1, :]
model.module.model.input_embeddings.weight[-1, :].div_(torch.norm(trainable_weight) / frozen_norm)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if actual_step == 1 or (i + 1) % args.print_freq == 0:
ex_per_sec = args.batch_size / batch_time.avg
if args.distributed:
batch_time.all_reduce()
data_time.all_reduce()
ex_per_sec = (args.batch_size / batch_time.avg) * ngpus_per_node
losses.all_reduce()
ce_losses.all_reduce()
top1.all_reduce()
top5.all_reduce()
ret_time.all_reduce()
cont_losses.all_reduce()
top1_caption.all_reduce()
top5_caption.all_reduce()
top1_image.all_reduce()
top5_image.all_reduce()
cap_time.all_reduce()
progress.display(i + 1)
writer.add_scalar('train/loss', losses.avg, actual_step)
writer.add_scalar('train/ce_loss', ce_losses.avg, actual_step)
writer.add_scalar('train/seq_top1_acc', top1.avg, actual_step)
writer.add_scalar('train/seq_top5_acc', top5.avg, actual_step)
writer.add_scalar('train/contrastive_loss', cont_losses.avg, actual_step)
writer.add_scalar('train/t2i_top1_acc', top1_caption.avg, actual_step)
writer.add_scalar('train/t2i_top5_acc', top5_caption.avg, actual_step)
writer.add_scalar('train/i2t_top1_acc', top1_image.avg, actual_step)
writer.add_scalar('train/i2t_top5_acc', top5_image.avg, actual_step)
writer.add_scalar('metrics/total_secs_per_batch', batch_time.avg, actual_step)
writer.add_scalar('metrics/total_secs_captioning', cap_time.avg, actual_step)
writer.add_scalar('metrics/total_secs_retrieval', ret_time.avg, actual_step)
writer.add_scalar('metrics/data_secs_per_batch', data_time.avg, actual_step)
writer.add_scalar('metrics/examples_per_sec', ex_per_sec, actual_step)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
image_bs = images.shape[0]
normalized_images = images - images.min()
normalized_images /= normalized_images.max() # (N, 3, H, W)
max_images_to_show = 16
# Append caption text.
pred_tokens = output[:, args.n_visual_tokens-1:-1, :].argmax(dim=-1)
generated_captions = tokenizer.batch_decode(pred_tokens, skip_special_tokens=False)
# Log image (and generated caption) outputs to Tensorboard.
if model_mode == 'captioning':
# Create generated caption text.
generated_cap_images = torch.stack([
utils.create_image_of_text(
generated_captions[i].encode('ascii', 'ignore'),
width=normalized_images.shape[3],
color=(255, 255, 0))
for i in range(len(generated_captions))], axis=0)
# Duplicate captions if we concatenated them.
if (args.concat_captions_prob > 0 and model_mode == 'captioning' and generated_cap_images.shape[0] != caption_images.shape[0]):
generated_cap_images = torch.cat([generated_cap_images, generated_cap_images], axis=0)
display_images = torch.cat([normalized_images.float().cpu(), caption_images, generated_cap_images], axis=2)[:max_images_to_show]
grid = torchvision.utils.make_grid(display_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image('train/images_gen_cap', grid, actual_step)
# Retrieved images (from text).
retrieved_image_idx = logits_per_text[:image_bs, :image_bs].argmax(-1)
t2i_images = torch.stack(
[normalized_images[retrieved_image_idx[i], ...] for i in range(len(retrieved_image_idx))],
axis=0)
t2i_images = torch.cat([t2i_images.float().cpu(), caption_images], axis=2)[:max_images_to_show]
t2i_grid = torchvision.utils.make_grid(t2i_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image('train/t2i_ret', t2i_grid, actual_step)
# Retrieved text (from image).
retrieved_text_idx = logits_per_image[:image_bs, :image_bs].argmax(-1)
retrieved_text = torch.stack(
[caption_images[retrieved_text_idx[i], ...] for i in range(len(retrieved_text_idx))],
axis=0)
i2t_images = torch.cat([normalized_images.float().cpu(), retrieved_text], axis=2)[:max_images_to_show]
i2t_grid = torchvision.utils.make_grid(i2t_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image('train/i2t_ret', i2t_grid, actual_step)
batch_time.reset()
cap_time.reset()
ret_time.reset()
data_time.reset()
losses.reset()
ce_losses.reset()
top1.reset()
top5.reset()
cont_losses.reset()
top1_caption.reset()
top5_caption.reset()
top1_image.reset()
top5_image.reset()
if i == args.steps_per_epoch - 1:
break
scheduler.step()
curr_lr = scheduler.get_last_lr()
if (actual_step == 1) or (i + 1) % args.print_freq == 0:
# Write current learning rate to Tensorboard.
writer = SummaryWriter(args.log_dir)
writer.add_scalar('train/lr', curr_lr[0], actual_step)
writer.close()
writer.close()
if __name__ == '__main__':
main(sys.argv[1:]) |